CNN

記事数:(90)

深層学習

画像を縮小:平均値プーリング

平均値かたまり集めとは、絵の大きさを小さくする技術で、大切な模様を残しながら、処理を軽くする効果があります。これは、絵を細かい正方形のます目に分けて、それぞれのます目の色の濃さの平均を計算することで、新しい小さな絵を作る方法です。たとえば、2×2のます目に絵を分けると、四角の中の四つの点の色を足し合わせて四で割った値が、新しい絵のその部分の色になります。 この処理には、いくつか利点があります。まず、絵の情報量が減るので、後の処理が速くなります。たくさんの計算をしなくて済むので、計算機の負担を軽くできるのです。また、小さな色の違いや画像のざらざらしたノイズの影響を少なくする効果もあります。たとえば、少しだけ色が違う点がいくつかあっても、平均を取れば、その違いが目立たなくなります。これは、絵の模様を認識する作業などで、より正確な結果を得るのに役立ちます。 この方法は、細かいタイルを敷き詰めた絵を遠くから見ることに似ています。近くで見ると一つ一つのタイルの違いがよく分かりますが、遠くから見ると、細かい違いは分からなくなり、全体的な模様だけがはっきりと見えてきます。平均値かたまり集めも同様に、細かい情報を取り除くことで、絵の大切な特徴を際立たせる効果があるのです。このため、物の形を見分けるといった作業に役立ち、人工知能の分野で広く使われています。
深層学習

画像認識の鍵、フィルタの役割

模様や形を見分けるために、画像を扱う際には色々な道具が必要です。その中でも『フィルタ』は画像の様々な特徴を捉えるための重要な道具です。まるで職人が様々な道具を使い分けて作品を仕上げるように、画像処理の世界でもフィルタを使い分けることで、目的の情報を抽出したり、画像の印象を変えることができます。 フィルタは数字の集まりでできており、この数字の並び方によってフィルタの働きが決まります。それぞれの数字は、画像のある一部分への反応の強さを示しています。数字が大きいほど、その部分の特徴を強く捉え、小さいほど反応が弱くなります。 例えば、物の輪郭をはっきりさせる『輪郭検出フィルタ』は、明るさが急に変化する場所に強く反応するように作られています。画像にこのフィルタを適用すると、輪郭部分が強調され、形がくっきりとして見えます。一方、『ぼかしフィルタ』は画像の細かい部分を滑らかにする働きがあります。このフィルタを使うと、画像から不要な細かい模様(ノイズ)を取り除いたり、柔らかい印象の画像を作ることができます。ぼかしフィルタは、周りの画素との色の差を小さくするように数字が調整されています。 このように、フィルタの種類によって画像から抽出される特徴は様々です。目的によって適切なフィルタを選ぶことが大切です。また、フィルタは一つだけ使うだけでなく、複数組み合わせることで、より複雑な特徴を捉えることもできます。色々な道具を組み合わせることで、より精巧な作品が作れるのと同じです。 近年注目されている深層学習という技術では、これらのフィルタの数字は自動的に調整されます。大量の画像データを使って学習させることで、人間が手作業で調整するよりも高度な画像認識を可能にしています。まるで熟練の職人が長年の経験で最適な道具の使い方を学ぶように、深層学習はデータから最適なフィルタを学習するのです。
深層学習

LeNet:手書き文字認識の先駆け

一九九八年、エーティーアンドティー研究所のヤン・ルカン氏を中心とした研究陣が、畳み込みニューラルネットワークという、新しい仕組みを持つ計算模型を開発しました。これは後に、レネットと呼ばれるようになります。当時、手書きの文字を機械で読み取る技術は、郵便番号の自動仕分けなど、様々な分野で必要とされていましたが、なかなか精度が上がらず、困っていました。既存の方法では、なかなか良い成果が出なかったのです。レネットの登場は、この状況を一変させる画期的な出来事でした。 レネットは、手書きの数字の画像を高い精度で読み取ることができました。これは、まるで人間が目で見て判断するかのようで、当時の技術水準をはるかに超えるものでした。レネットという名前は、開発者の一人であるヤン・ルカン氏にちなんで付けられました。 レネットの成功は、深層学習という、人間の脳の仕組みを模倣した学習方法の可能性を示す重要な出来事でした。そして、画像認識技術の分野に、全く新しい時代を切り開いたのです。 レネット以前は、コンピュータに文字を認識させるのは非常に難しい作業でした。しかし、レネットは画像を小さな領域に分割し、それぞれの領域の特徴を捉えることで、全体像を把握する手法を用いました。これは、人間がものを見るときに、無意識に行っていることに似ています。例えば、私たちは「3」という数字を見るとき、全体の形だけでなく、曲線や線の組み合わせなど、細かい特徴を捉えて判断しています。レネットも同様に、画像の細部を読み取ることで、高い精度を実現したのです。 今日では、様々な画像認識技術が発展し、私たちの生活を豊かにしています。自動運転技術や顔認証システムなど、多くの技術がレネットの登場によって築かれた土台の上に成り立っていると言えるでしょう。手書き文字認識の先駆けとなったレネットの功績は、今も高く評価されています。
深層学習

画像処理におけるパディングの役割

写真の縁に額縁を付けるように、画像の周囲に余白を追加する処理をパディングと言います。この余白部分には、あらかじめ決められた値を持つ画素が配置されます。まるで額縁のように、元の画像を囲むことで、画像全体の大きさを調整します。この余白部分の画素は、元の画像には含まれていない、処理をスムーズに進めるための追加部分です。 パディングを使う場面の一つに、畳み込みニューラルネットワーク(CNN)の処理が挙げられます。CNNは、画像の中から重要な特徴を見つけるために、畳み込みと呼ばれる計算を何度も繰り返します。この畳み込み計算を繰り返すたびに、処理対象の画像サイズは小さくなってしまいます。このため、何度も畳み込み計算を行うと、最終的には画像が小さくなりすぎて、重要な情報が失われてしまう可能性があります。そこで、パディングを用いて画像の周りに余白を追加することで、画像サイズの縮小を防ぎ、より多くの畳み込み計算を可能にします。 パディングには、画像の端の情報を適切に捉える効果もあります。畳み込み計算では、小さな窓を画像の上でスライドさせながら計算を行います。パディングがない場合、画像の端にある画素は、窓の中心に来る回数が少なくなり、十分に情報が利用されません。しかし、パディングで余白を追加することで、画像の端の画素も窓の中心に来る回数が増え、画像全体の情報を満遍なく使えるようになります。このように、パディングは、画像処理において、畳み込み計算を円滑に進め、画像の端の情報も有効に活用するための重要な技術です。
深層学習

Keras入門:誰でも手軽に機械学習

「ケラス」は、人の頭脳の働きをまねて作られた、様々な計算を行う技術「ニューラルネットワーク」を扱うための道具です。これは「パイソン」という誰でも使える言葉で書かれており、絵を見て何が写っているか当てる、人の言葉を理解するといった、近頃話題の技術を支えています。 こういった技術は私たちの生活を便利にしてくれますが、それを扱うには、難しい数学や複雑な書き方の知識が必要で、なかなか手が出せない人も多いのが現状です。ケラスは、そんな難しさを少しでも減らし、より多くの人がニューラルネットワークを使えるようにと作られました。 ケラスを使うと、専門的な知識がなくても、短い書き方で複雑なニューラルネットワークを作ることができます。まるで玩具の積み木を組み上げるように、手軽にニューラルネットワークを作ることができるので、初心者でも気軽に機械学習の世界に触れることができます。 ケラスは、色々な種類のニューラルネットワークを簡単に作れるだけでなく、作ったものを動かす場所も選びません。自分のパソコンでも、大きな計算機でも、あるいは携帯電話の中でも、ケラスで作ったニューラルネットワークは同じように動きます。 さらに、ケラスは様々な機能を追加できるようにも設計されています。新しい技術や、自分に必要な特別な機能を、まるで部品を取り付けるように簡単に追加できます。この柔軟性のおかげで、ケラスは研究者から開発者まで、幅広い人々に利用されています。 このように、ケラスは使いやすさと柔軟性を兼ね備えた、強力な道具です。誰でも気軽に最先端の技術に触れることができるため、機械学習の普及に大きく貢献しています。これから機械学習を始めてみたいという方には、うってつけの道具と言えるでしょう。
深層学習

Inceptionモジュール:高精度画像認識の立役者

画像を認識する技術において、大きな進歩をもたらした仕組み、それがインセプションモジュールです。これは、幾重にも積み重なった層の中で、画像の特徴を読み取るための重要な部品です。このモジュールは、様々な大きさの「ふるい」を使って画像を「ふるいにかける」ことで、色々な特徴を捉えます。 例えるなら、目の細かいふるいと粗いふるいを同時に使うようなものです。目の細かいふるいは、小さなゴミや砂粒を捉えます。これは、画像の細かい部分、例えば模様の小さな変化などを捉えるのに役立ちます。一方、目の粗いふるいは、大きな石ころや枝を捉えます。これは、画像の大きな部分、例えば物の形や輪郭などを捉えるのに役立ちます。インセプションモジュールでは、一かける一、三かける三、五かける五という三種類の大きさのふるいを使います。それぞれのふるいは、画像の異なる範囲の情報を読み取ります。 さらに、「最大値を選び出す」という特別な処理も加えます。これは、画像の中で一番目立つ特徴だけを選び出す処理です。例えば、明るさが少し変化したとしても、一番明るい部分は変わらないため、ノイズに強い特徴を捉えるのに役立ちます。 このように、異なる大きさのふるいと最大値を選ぶ処理によって得られた情報を一つにまとめることで、画像のより豊かで詳細な情報を得ることができます。そして、この豊富な情報こそが、画像認識の精度向上に大きく貢献しているのです。
深層学習

深層学習の謎:二重降下現象

近年の技術革新によって、コンピュータが自ら学習する深層学習という手法が大きく進歩しました。この技術は、まるで人が目や耳で情報を得て判断するように、画像を見分けたり、言葉を理解したり、音を聞き取ったりする作業を驚くほど正確に行えるようになりました。これまでは人間が一つ一つルールを設定してコンピュータに作業をさせていましたが、深層学習では膨大なデータからコンピュータ自身がルールを見つけ出すため、従来の方法では難しかった複雑な処理も可能になりました。例えば、写真に写っている物体を特定したり、外国語を翻訳したり、人の声を文字に変換したりといった作業が、高い精度で実現できるようになっています。深層学習は、医療診断や自動運転、工場の自動化など、様々な分野で革新的な変化をもたらしており、私たちの生活をより豊かに、便利にする可能性を秘めています。 しかし、この革新的な技術には、まだ解明されていない謎も残されています。深層学習の仕組みは非常に複雑で、まるで巨大な迷路のような構造をしているため、コンピュータがどのように学習し、判断しているのかを完全に理解することは難しいのです。学習を進めるほど性能が向上するはずなのに、ある時点を過ぎると逆に性能が低下してしまうといった不思議な現象も観測されています。これはまるで、勉強すればするほど成績が下がるようなもので、専門家の間でも大きな課題となっています。このような不可解な現象の一つに、「二重降下現象」と呼ばれるものがあります。この現象は、深層学習モデルの学習過程で性能が一度低下し、その後再び向上するという特徴的な挙動を示します。まるで山を登って下り、また別の山を登るような様子から、二重降下現象と名付けられました。この現象のメカニズムを解明することは、深層学習モデルの性能向上や信頼性向上に不可欠であり、世界中の研究者がその解明に挑んでいます。この「二重降下現象」について、これから詳しく解説していきます。
深層学習

画像認識の起源:ネオコグニトロン

近頃、技術の進歩によって、画像を認識する技術はとてもすごいことになっています。例えば、携帯電話で顔を確認することでロックを解除したり、車が自分で道を走ったりする技術も、この画像認識技術のおかげです。こうした技術は、私たちの暮らしの中にどんどん入ってきました。では、このような技術はどのようにして生まれたのでしょうか。それは、昔の日本の福島邦彦先生という方が、1980年に考えた「ネオコグニトロン」という仕組みがもとになっています。この文章では、このネオコグニトロンがどんなものなのか、どこがすごかったのか、そして今の画像認識技術にどうつながっているのかを説明していきます。 ネオコグニトロンは、人間の脳の仕組みを真似て作られたものです。人間の脳は、目から入った情報を、段階的に処理することで、ものを見分けています。ネオコグニトロンも同様に、何層もの処理を重ねることで、画像の中に何が写っているのかを認識します。最初の層では、単純な線や角を認識し、次の層ではそれらを組み合わせて、より複雑な形を認識していきます。こうして、最終的には、全体の形を認識することができるのです。これは、従来の画像認識技術とは大きく異なる点でした。 ネオコグニトロンのすごいところは、画像が多少変形していても、同じものだと認識できる点です。例えば、手書きの文字は、書く人によって形が少しずつ違います。しかし、ネオコグニトロンは、文字の形が多少違っても、同じ文字だと判断できます。これは、人間の脳が持つ柔軟な認識能力に近づくための大きな一歩でした。また、ネオコグニトロンは、教えなくても、自分で学習していくことができます。たくさんの画像を見せることで、様々なものを認識する能力を自ら高めていくのです。 このネオコグニトロンは、その後の画像認識技術の研究に大きな影響を与えました。現在の画像認識技術の中心となっている「深層学習(ディープラーニング)」も、ネオコグニトロンの考え方がもとになっていると言われています。つまり、ネオコグニトロンは、現代の画像認識技術の礎を築いた、画期的な発明と言えるでしょう。
深層学習

Grad-CAM:画像認識の解釈

画像認識の仕組みを深く理解するには、人工知能がどのように物事を判断しているのかを解き明かす必要があります。そのための強力な道具として「勾配に基づく注目範囲の可視化」、すなわち勾配に基づく種別活性化地図があります。この技術は、画像認識に使われる人工知能が、画像のどの部分を見て、例えば猫だと判断したのかを、視覚的に分かりやすく示してくれます。 たとえば、猫の画像を認識する場面を考えてみましょう。人工知能が猫の耳や目に注目して「猫」と判断したのであれば、その判断は信頼できます。しかし、もし背景の模様や周りの景色に注目して「猫」と判断したのであれば、その判断は誤っている可能性があります。このように、人工知能が何に着目して判断を下したのかを理解することは、その判断の信頼性を評価する上でとても重要です。 勾配に基づく種別活性化地図は、まさに人工知能の注目範囲を可視化する技術です。人工知能は複雑で分かりにくい仕組みを持っているため、しばしばブラックボックスと呼ばれます。この技術は、そのブラックボックスの中身を少しだけ覗かせてくれる、貴重な存在と言えるでしょう。この技術のおかげで、画像認識の分野での説明責任を果たしやすくなり、人工知能に対する理解を深めることができます。人工知能がどのように学習し、どのように判断を下しているのかを明らかにすることで、私たちはより良い人工知能を開発し、活用していくことができるのです。
深層学習

GoogLeNet:画像分類の革新

二千十四年に開かれた、画像を種類ごとに分ける技術の腕試しとなる大会、「画像大規模視覚認識チャレンジ」(略称アイエルエスブイアールシー)で、グーグルネットは他の模型を抑え、堂々一番の座を勝ち取りました。このアイエルエスブイアールシーは、画像を認識する分野で大変有名な大会であり、グーグルネットが優勝したことは、その優れた力を広く世間に示すこととなりました。 この輝かしい成果は、画像を種類ごとに分ける技術の進歩における大きな節目と言えるでしょう。これまでの画像認識模型は、層を深く積み重ねることで精度を高めていましたが、グーグルネットは「インセプションモジュール」と呼ばれる、複数の畳み込み層とプーリング層を並列に配置した独自の構造を採用しました。この工夫により、少ない計算量でより多くの特徴を捉えることが可能となり、精度の向上と処理速度の高速化を両立することができました。 グーグルネットの登場は、画像認識技術における新たな時代の幕開けを告げるものでした。それまでの模型に比べて、精度の飛躍的な向上はもちろんのこと、計算量の削減という点でも大きな革新をもたらしました。この革新は、限られた計算資源でも高精度な画像認識を可能にするという点で、特にモバイル機器への応用において大きな意義を持ちます。 グーグルネットの成功は、画像認識技術の研究開発をさらに加速させ、様々な分野への応用を促進する力となりました。現在、画像認識技術は、自動運転、医療画像診断、顔認証など、私たちの生活の様々な場面で活用されており、グーグルネットはその発展に大きく貢献したと言えるでしょう。この技術の更なる発展により、私たちの未来はますます便利で豊かなものになっていくと考えられます。
深層学習

高速で高精度な物体検出:Faster R-CNN

近ごろ、機械の目で見る技術、いわゆるコンピュータビジョンにおいて、ものの場所を見つける技術がとても進歩しています。写真や動画に写る特定のものを探し出し、どこにあるのかを正確に示すこの技術は、自動で車を走らせる、安全を守るための監視装置、病気の診断を助ける医療画像など、様々な場面で使われています。 初期の技術では、ものの場所を見つけるのに時間がかかり、すぐに結果を出す必要のある場面では使いにくいという問題がありました。例えば、自動運転では、周りの状況を瞬時に把握することが重要です。しかし、処理に時間がかかると、安全な運転が難しくなります。また、監視システムでも、リアルタイムで不審な行動を検知できなければ、効果的な対策ができません。 しかし、熱心な研究開発によって、より速く、より正確にものの場所を見つける技術が次々と生み出されています。処理速度の向上は、特別な計算装置やアルゴリズムの改良によって実現されました。また、深層学習と呼ばれる技術の進歩も大きく貢献しています。深層学習は、人間の脳の仕組みを模倣した技術で、大量のデータからものの特徴を自動的に学習することができます。これにより、様々な種類のものを高精度で見分けることができるようになりました。 そのような技術革新の中で登場したのが「Faster R-CNN」という画期的な技術です。従来の技術よりも速く、正確にものの場所を見つけることができるため、多くの注目を集めています。Faster R-CNNは、深層学習を巧みに利用することで、処理速度と精度の両立を実現しました。この技術は、コンピュータビジョンの分野に大きな進歩をもたらし、様々な応用分野で活用されることが期待されています。例えば、自動運転では、より安全な走行を実現するために、Faster R-CNNのような高精度な物体検出技術が不可欠です。また、医療画像診断では、病気の早期発見に役立つことが期待されています。このように、Faster R-CNNは、私たちの生活をより豊かに、より安全にするための重要な技術となるでしょう。
深層学習

高速物体検出:Fast R-CNN

近年、計算機による画像認識技術がめざましい発展を見せており、中でも画像内の対象物を探し出す技術は目覚ましい進歩を遂げています。この技術は、写真や動画の中から特定のものを探し出し、それが何であるかを判断するものです。例えば、自動運転の分野では、周囲の車や歩行者、信号などを認識するために必要不可欠です。また、医療の現場では、レントゲン写真から異常箇所を発見する際に役立っています。さらに、製造業では、製品の欠陥を自動で見つける検査工程に活用されています。このように、対象物を探し出す技術は、暮らしの様々な場面で利用されており、ますます重要度を増しています。 この技術は、大きく分けて二つの段階で処理を行います。まず、画像の中から対象物らしきものが写っている場所を大まかに特定します。そして、特定された場所について、それが本当に目的の対象物であるかどうか、また、それが何であるかを詳しく調べます。このような処理を行うことで、画像全体をくまなく調べるよりも効率的に対象物を探し出すことができます。 今回紹介する「高速領域畳み込みニューラルネットワーク(高速領域畳み込みニューラル網)」は、このような対象物検出技術の中でも、特に処理速度の速さに重点を置いた手法です。従来の手法では、画像の中から対象物らしき場所を一つずつ切り出して調べていましたが、この手法では、画像全体を一度に処理することで、大幅な高速化を実現しています。この高速化により、動画のような連続した画像に対してもリアルタイムで対象物を検出することが可能になり、自動運転やロボット制御など、様々な応用が期待されています。この手法の詳しい仕組みについては、次の章で詳しく説明します。
深層学習

FPN:高精度な物体検出を実現する技術

写真の中の物は、距離によって大きさが違って見えます。遠くの物は小さく、近くの物は大きく見えるのは、日常よく目にする光景です。このため、写真に写る様々な大きさの物を正確に捉えるには、写真の細かさ(解像度)を様々に変えて分析する必要があります。この考えに基づいて作られたのが特徴ピラミッドです。 特徴ピラミッドは、様々な解像度の写真からそれぞれの特徴を抜き出し、それらを組み合わせることで、より確かな全体像を作り上げます。これは、大きさの異なる物を漏れなく見つけるために非常に大切です。例えば、小さな物をはっきりと捉えるには、写真の細かい部分まで見える高い解像度が必要です。一方、大きな物を見つけるだけなら、低い解像度でも十分です。特徴ピラミッドは、高解像度から低解像度までの情報をまとめて活用することで、どんな大きさの物でも効率よく見つけることを可能にします。 例えるなら、遠くの景色全体を眺めるには広い視野が必要ですが、近くの小さな花を観察するには、視線を一点に集中させる必要があります。特徴ピラミッドは、広い視野と集中した視野の両方を使って、周りの状況を隈なく把握するようなものです。様々な解像度で得られた情報を組み合わせることで、全体像を把握しながら、細部も見逃さない、より精度の高い分析が可能となります。これにより、自動運転やロボットの視覚認識など、様々な分野で物体の検出精度を向上させることに役立っています。
深層学習

全畳み込みネットワーク:画像の隅々まで理解する

近ごろ、画像を判別する技術は大きく進歩しました。特に、深層学習という方法を使った畳み込みニューラルネットワーク(略してCNN)は、画像の種類を分けたり、画像の中の物を見つけたりする作業で素晴らしい成果をあげています。しかし、これらの方法は、画像全体を見て大まかな内容を掴むことに長けていましたが、画像の細かい部分、つまり一つ一つの点の色が何を表しているかを詳しく理解することは不得意でした。 そこで生まれたのが、全畳み込みネットワーク(略してFCN)という方法です。FCNはCNNの仕組みを改良し、画像の一つ一つの点を細かく分類することで、画像の内容をより深く理解できるようにしました。従来のCNNとは違い、FCNは全部の層が畳み込み層だけでできており、全体をつなぐ層がありません。この工夫のおかげで、どんな大きさの画像でも扱うことができるようになりました。 FCNは、画像の中のどの点がどの物に属しているかを判別する「意味分割」と呼ばれる作業で特に力を発揮します。例えば、自動運転のシステムで、道路や歩行者、信号などを正確に見分けるために使われたり、病院でレントゲン写真などの画像から、腫瘍などの病気の部分を見つけるために使われたりしています。 FCNが登場するまでは、画像を細かい部分まで理解することは難しかったのですが、FCNによって一つ一つの点まで意味を理解できるようになったため、様々な分野で応用が進んでいます。例えば、農業の分野では、FCNを使って作物の種類や生育状況を調べたり、衛星写真から建物の種類や道路の状態を把握したりすることも可能になりました。このように、FCNは画像認識技術を大きく進歩させ、私たちの生活をより豊かにするために役立っています。
機械学習

誤差逆伝播法:学習の仕組み

人工知能が様々なことを学習し、高い精度で答えを導き出せるようにするためには、たくさんの工夫が凝らされています。その中でも、「誤差逆伝播法」と呼ばれる学習方法はとても重要な役割を担っています。この方法は、人が何か新しいことを学ぶときのやり方とよく似ています。 例えば、自転車に乗る練習を想像してみてください。最初はうまくバランスが取れずに何度も転んでしまうかもしれません。しかし、転ぶたびに「なぜ転んだのか」「どうすれば転ばずに済むのか」を考え、少しずつ体の動かし方を修正していきます。何度も繰り返すうちに、自然とバランスを取れるようになり、最終的にはスムーズに自転車に乗れるようになります。 人工知能の学習も同じです。人工知能は、たくさんの計算式を組み合わせて答えを導き出します。しかし、最初のうちは正しい答えからかけ離れた結果を出してしまうことも少なくありません。この時、「誤差逆伝播法」を用いることで、まるで自転車の練習のように、どこを修正すれば正しい答えに近づけるのかを計算し、計算式の中にある数値を少しずつ調整していきます。 「誤差」とは、人工知能が出した答えと、本来の正しい答えとの間の違いのことです。この誤差が大きければ大きいほど、人工知能の答えは間違っているということになります。「逆伝播」とは、この誤差を計算式の出力側から入力側へと逆にたどっていくことを意味します。誤差を逆向きにたどることで、どの部分がどれくらい影響を与えているのかを調べ、より正確な答えを出せるように数値を調整していくのです。 このように、「誤差逆伝播法」は人工知能が学習する上で欠かせない方法であり、私たちが試行錯誤を繰り返しながら学ぶ過程をうまく再現していると言えるでしょう。
深層学習

EfficientNet:高精度な画像分類モデル

近ごろの画像を種類分けする技術の進み方は、驚くほど速く、様々な場所で役立てられています。たとえば、病院で使う画像による診断では、病気の部分を見つけることや診断の助けになるなど、医療現場で活躍しています。車の自動運転技術においても、歩く人や信号機を認識するために欠かせない技術となっています。さらに、ものを作る工場では、製品の不良品を見つけるのにも使われるなど、画像を種類分けする技術の使い道はどんどん広がっています。 このような画像を種類分けする技術の中心となるのが、深層学習という方法で作る予測の仕組みです。深層学習では、人間の脳の仕組みをまねた複雑な計算を使って、コンピュータに画像の特徴を学習させます。たくさんの画像データを読み込ませることで、コンピュータは次第に画像に写っているものが何なのかを判断できるようになります。まるで人間の子供のように、たくさんの経験を積むことで賢くなっていくのです。 そして、数多くの深層学習の仕組みの中でも、特に正確さと処理の速さを兼ね備えた仕組みとして注目されているのが、「エフィシェントネット」と呼ばれるものです。「エフィシェントネット」は、従来の仕組みよりも少ない計算量で高い精度を実現しており、限られた計算資源しかない環境でも効果的に画像分類を行うことができます。そのため、スマートフォンや小型の機器への搭載も可能になり、画像分類技術の普及をさらに加速させる可能性を秘めていると期待されています。たとえば、スマートフォンで撮影した写真を自動で整理したり、商品のバーコードを読み取って価格を調べたりといった、私たちの日常生活をより便利にする様々な応用が考えられています。今後、ますます進化していくであろう画像分類技術から目が離せません。
深層学習

全結合層:ニューラルネットワークの重要要素

あらゆる結びつきが網目のように張り巡らされた構造を持つ全結合層は、神経回路網を構成する重要な層のひとつです。この層は、前の層にある全ての節と、次の層にある全ての節が、それぞれ繋がっているという特徴を持っています。例えるなら、糸電話の網のように、前の層のどの糸電話からも、次の層の全ての糸電話に声が届くようなイメージです。 では、この層でどのような情報処理が行われているのでしょうか。まず、前の層のそれぞれの節からは、何らかの値が出力されます。この値は、次の層へと送られる際に、それぞれの結び目ごとに異なる重みが掛けられます。重みとは、その結びつきの強さを表す数値で、値が大きければ結びつきが強く、小さければ結びつきが弱いことを意味します。次の層の各節では、前の層の全ての節から送られてきた重み付けされた値を全て足し合わせます。そして、この合計値にある処理を加えることで、次の層への入力値が完成します。この処理は、活性化関数と呼ばれ、値の範囲を調整したり、特定のパターンを強調したりする役割を担います。 全結合層は、この緻密な結びつきによって、複雑な情報を効率的に処理することができます。例えば、絵の内容を判別する場面を考えてみましょう。前の層では、絵の中に含まれる様々な特徴、例えば色や形、模様などが抽出されます。そして、全結合層では、これらのバラバラな特徴を統合し、最終的な判断材料を作り出します。これは、全体像を把握するために、一つ一つのピースを組み合わせるような作業と言えるでしょう。このように、全結合層は神経回路網の高度な表現力を支える重要な役割を担っているのです。
深層学習

膨張畳み込みで画像認識を進化

画像を認識する技術において、膨張畳み込みという画期的な手法が登場しました。これは、従来の畳み込み処理とは異なる方法で画像の特徴を捉えます。 従来の畳み込み処理では、フィルターと呼ばれる小さな窓を画像全体に隙間なく滑らせて、それぞれの場所で計算を行い、画像の特徴を抽出していました。この方法は、局所的な情報、つまりフィルターで覆われた範囲の情報しか捉えることができません。 一方、膨張畳み込みでは、フィルターを適用する際に一定の間隔を空けます。この間隔を「膨張率」と呼び、膨張率が大きいほど、フィルターと画像の間隔は広くなります。この様子は、フィルターが膨張しているように見えることから、「膨張畳み込み」と呼ばれます。 フィルターの間隔を空けることで、より広い範囲の情報を捉えることができます。例えば、膨張率が1の場合、フィルターは一つ飛ばしに画像に適用されます。すると、同じフィルターの大きさでも、従来の手法よりも広い範囲の情報を取り込むことができます。 この手法の利点は、画像の全体像を把握しながら、細部の特徴も捉えることができる点にあります。遠くにある物体の形や、風景全体の雰囲気など、広い範囲の情報を必要とする認識に効果を発揮します。また、物体の大きさや位置の変化にも対応しやすいため、様々な場面で活用されています。 従来の手法では、限られた範囲の情報しか捉えられなかったため、画像全体の文脈を理解することが困難でした。膨張畳み込みは、この問題を解決し、画像認識の精度向上に大きく貢献しています。より少ない計算量でより多くの情報を捉えることができるため、処理速度の向上にも繋がっています。
深層学習

DenseNet:濃密な接続で高精度を実現

稠密ネットワーク(デンスネット)は、絵を理解したり見分けたりする分野で高い正答率を誇る、人間の脳の神経細胞の繋がり方をまねた計算手法です。これまでのやり方では、層が深くなるにつれて、学習がうまくいかなくなる、傾斜が消えてしまうといった問題が起こることがありました。これは、幾重にも重なった層を情報がうまく伝わらないことが原因です。デンスネットは、この問題を解決するために、ネットワーク内の層同士をくまなく繋げることで、情報のやり取りを良くし、学習を安定させています。すべての層が互いに繋がっているため、デンスネットは「濃密に接続されたネットワーク」とも呼ばれます。 この構造は、すべての層が前の層からの出力を受け取るだけでなく、それ以前のすべての層からの出力も受け取ることを意味します。例えるなら、バケツリレーで水を運ぶ際に、各人が前の人のバケツからだけでなく、スタート地点からのすべての人から少しずつ水を受け取るようなものです。このように、各層は豊富な情報を受け取ることができるため、学習が効率的に進みます。また、前の層の特徴が後の層まで直接伝わるため、傾斜が消えてしまう問題も軽減されます。 さらに、デンスネットは特徴マップの再利用を促進します。特徴マップとは、画像の特徴を抽出したものです。デンスネットでは、各層が前の層の特徴マップを再利用できるため、少ない計算量で高い性能を実現できます。これは、限られた資源で高性能なシステムを構築する上で非常に重要です。デンスネットは、画像認識だけでなく、物体検出や画像分割など、様々な分野で応用され、高い成果を上げています。この革新的なネットワーク構造は、今後も人工知能の発展に大きく貢献していくでしょう。
深層学習

畳み込みにおける移動幅、ストライドを理解する

畳み込みニューラルネットワーク(CNN)において、画像を解析する際に欠かせないのが「ストライド」という考え方です。これは、画像に対してフィルターを適用する際に、フィルターが移動する幅(歩幅)のことを指します。畳み込み処理では、フィルターを画像の一部分に適用することで、その部分の特徴を抽出します。このフィルターを少しずつずらして画像全体に適用していくことで、画像の様々な特徴を捉えることができるのです。 このフィルターをずらす幅こそがストライドです。例えば、ストライドが1の場合、フィルターは1画素ずつ移動します。ストライドが2であれば、フィルターは2画素ずつ移動します。つまり、ストライドの値が大きいほど、フィルターの適用回数が減り、処理速度が速くなります。これは、広い歩幅で画像上を移動するイメージです。 しかし、ストライドを大きくすると、処理速度は向上する一方で、画像の情報が間引かれてしまうというデメリットも存在します。フィルターの適用回数が減るということは、画像の細かい部分を見逃してしまう可能性があるということです。そのため、特徴の抽出精度が低下する可能性があります。これは、大きな歩幅で移動すると、足元の小さな石ころを見逃してしまうようなものです。 逆に、ストライドの値を小さくすると、処理速度は遅くなりますが、画像のより多くの情報を得ることができます。フィルターが細かく移動することで、画像の細部までくまなく調べることができるからです。これは、小さな歩幅で注意深く地面を観察するようなものです。 このように、ストライドは処理速度と特徴抽出精度の間のバランスを調整する重要な要素です。適切なストライド値を選択することで、効率的に画像の特徴を捉えることができます。
深層学習

スキップ結合:深層学習の革新

畳み込みニューラルネットワーク(CNN)において、層と層の間を飛び越えて情報を伝える機構がスキップ結合です。従来のCNNでは、情報は層を順々に通過し、次の層へと伝えられていきます。まるで階段を一段一段上るように、情報はネットワークの中を深く進んでいきます。しかし、この方法には問題点がありました。ネットワークが深くなると、学習がうまく進まなくなる、勾配消失問題と呼ばれる現象が発生してしまうのです。深いネットワークは複雑な事柄を学習するのに適していますが、この問題によって、その能力を十分に発揮できませんでした。 スキップ結合は、この問題を解決する画期的な手法です。ある層の出力を、より深い層に直接伝えることで、情報の伝達経路を短縮します。階段を一段ずつ上るのではなく、数段まとめて飛び越えるイメージです。これにより、勾配が消失しにくくなり、深いネットワークでも効率的に学習を進めることができます。 スキップ結合によって、ネットワークはより複雑な情報を捉えることができるようになります。例えば、画像認識のタスクでは、初期の層では単純な輪郭や色を認識し、深い層ではより複雑な形状や模様を認識します。スキップ結合は、これらの異なるレベルの情報を統合し、より正確な認識を可能にします。また、スキップ結合は、ネットワークの表現力を向上させる効果もあります。情報伝達経路が複数になることで、ネットワークは多様な情報を学習し、より柔軟に表現できるようになります。これは、精度の向上に大きく貢献します。スキップ結合は、CNNの設計における重要な技術であり、様々な分野で活用されています。
深層学習

画像を縮小:サブサンプリング層

画像を扱う時、そのままだと情報量が多すぎて、処理に時間がかかったり、わずかな違いに過敏に反応してしまったりすることがあります。そこで、画像の解像度を下げ、情報を減らす「縮小」という操作が役立ちます。この縮小を行う部分を「サブサンプリング層」、または「プーリング層」と呼びます。 縮小の仕組みは、画像を小さな区画に分け、それぞれの区画を代表する一つの値を求めるというものです。例えば、4つの画素値を持つ区画があったとします。この4つの画素値から、一番大きい値を選ぶ「最大値プーリング」や、4つの値を合計して4で割る「平均値プーリング」などを行い、その結果を新しい画素値とします。すべての区画でこの処理を行うことで、元の画像よりも小さな画像が作られます。 縮小を行うメリットは主に二つあります。一つ目は、計算量の削減と処理速度の向上です。画像が小さくなることで、扱うデータ量が減り、処理が速くなります。二つ目は、画像の細かな変化に対する頑健性の向上です。例えば、手書きの数字を認識する場合、同じ数字でも書き方に個人差があります。少し線がずれていたり、太さが違ったりしても、同じ数字として認識させる必要があります。縮小を行うことで、細かな違いを無視して、全体的な特徴を捉えやすくなります。これは、少し位置がずれた線や、太さが違う線も、同じ区画に含まれていれば、代表値としては同じ値になる可能性が高いためです。このように、縮小は画像認識において重要な役割を果たしています。
機械学習

深層強化学習とゲームAIの進化

近頃、人工知能(AI)の技術は驚くほどの進歩を見せており、様々な分野で活用が広がっています。特に、ゲームの分野におけるAIの進化は著しく、深層学習(ディープラーニング)と強化学習を組み合わせた深層強化学習の登場によって、人の能力を上回るAIも現れるようになりました。 深層学習とは、人間の脳の仕組みを模倣した学習方法で、大量のデータから複雑なパターンや特徴を自動的に抽出することができます。この深層学習に、試行錯誤を通じて学習を進める強化学習を組み合わせた深層強化学習は、ゲームAIの開発に大きな変化をもたらしました。 従来のゲームAIは、あらかじめ決められたルールに従って行動していましたが、深層強化学習を用いたAIは、自ら学習し、最適な行動を選択することができるようになりました。例えば、囲碁や将棋などの複雑なルールを持つゲームにおいても、膨大な量の対局データから学習することで、熟練した棋士に匹敵、あるいは勝るほどの能力を発揮するAIが登場しています。 深層強化学習は、ゲームのキャラクターの動きをより自然で人間らしくしたり、敵のAIの戦略を高度化させ、ゲームの面白さを向上させることにも役立っています。さらに、ゲームの開発効率を高める効果も期待できます。従来、ゲームAIの開発には、プログラマーが複雑なルールを手作業で設定する必要がありましたが、深層強化学習では、AIが自ら学習するため、開発にかかる時間や手間を大幅に削減することができます。 この深層強化学習は、ゲーム業界だけでなく、自動運転やロボットの制御、医療診断、創薬など、様々な分野への応用が期待されています。例えば、自動運転では、AIが様々な状況下での運転を学習することで、より安全で効率的な運転を実現することができます。ロボット制御では、複雑な作業を自動化し、生産性の向上に貢献することが期待されます。このように、深層強化学習は、今後の社会に大きな影響を与える革新的な技術と言えるでしょう。
深層学習

畳み込み処理の仕組み

たたみ込みとは、画像や音声といった様々な情報を処理する際に使われる大切な技術です。まるでスライドガラスに載せた試料を観察するように、小さな窓(フィルター)を情報全体に少しずつずらしながら動かし、その窓を通して見える範囲の情報を使って計算を行います。 具体的には、フィルターと重なった部分の情報一つ一つに、フィルターに設定された数値をかけ合わせて、その合計を計算します。この計算を画像全体で行うことで、新しい画像(特徴地図)が作られます。この特徴地図は、元の情報の特徴を捉えたものになります。 例えば、画像の輪郭を強調したい場合、輪郭部分を強調するフィルターを用意します。このフィルターは、中央部分が明るく、周囲が暗いといった明暗のパターンを持っています。フィルターを画像全体に適用することで、輪郭が強調された画像が得られます。 ぼかし処理を行う場合、周りの画素と値を混ぜ合わせるフィルターを用います。これは、フィルターの中心から周囲に向かって滑らかに値が小さくなるようなパターンになっています。このフィルターを画像に適用すると、画像全体がぼやけたようになり、細かい模様が目立たなくなります。 このように、たたみ込みはフィルターを使い分けることで、様々な効果を得ることができます。画像処理以外にも、音声処理や自然言語処理など、幅広い分野で活用されています。フィルターの種類によって、様々な特徴を抽出することができ、情報の分析や加工に役立ちます。