畳み込み層

記事数:(6)

深層学習

画像認識の立役者:畳み込みニューラルネットワーク

畳み込みニューラルネットワーク(CNN)は、深層学習という機械学習の一種において、特に画像や動画といった視覚情報を扱う分野で素晴らしい成果をあげている大切な技術です。まるで人間の目で物を見る仕組みを真似たような構造を持ち、画像に含まれる様々な特徴をうまく捉えることができます。 従来の画像処理の方法では、人間がコンピュータに「猫の耳はこういう形」、「目はこういう大きさ」などと特徴を一つ一つ教えて、それを基にコンピュータが画像を処理していました。しかし、CNNは学習データから自動的に画像の特徴を学ぶことができます。そのため、人間が教えなくても、コンピュータが自分で「猫には尖った耳がある」「ひげがある」といった特徴を見つけ出し、それらを組み合わせて猫を識別できるようになるのです。これは、従来の方法に比べて格段に高度で複雑な画像認識を可能にする画期的な技術です。 例えば、たくさんの猫の画像をCNNに学習させると、CNNは猫の耳の形、目の大きさや色、ひげの本数、毛並み、模様など、様々な特徴を自分で見つけ出します。そして、新しい猫の画像を見せられた時、学習した特徴を基に、それが猫であるかどうかを判断します。まるで人間が経験から学習していくように、CNNもデータから学習し、その精度を高めていくことができます。 この自動的に特徴を学習する能力こそが、CNNの最大の強みです。CNNが登場する以前は、画像認識の精度はあまり高くありませんでした。しかし、CNNによって飛躍的に精度が向上し、今では自動運転や医療画像診断など、様々な分野で応用されています。CNNは、まさに画像認識分野における革新的な進歩を支える重要な技術と言えるでしょう。
深層学習

画像認識の鍵、局所結合構造

畳み込みニューラルネットワーク(CNN)は、まるで人の目で物事を見るように、画像の中から重要な特徴を捉えることができます。このCNNの心臓部と言えるのが畳み込み層です。畳み込み層では、フィルタと呼ばれる小さな窓を使って、入力画像をくまなく調べていきます。このフィルタは、特定の模様や形に反応するように作られており、画像全体を細かく見ていくことで、隠れた特徴を浮かび上がらせることができます。 たとえば、入力画像に縦線があるとします。縦線に反応するように作られたフィルタを画像の上から下まで、左から右へと順番に動かしていくと、フィルタは縦線がある部分で強く反応し、そうでない部分ではあまり反応しません。この反応の強さを数値として記録することで、画像のどこに縦線があるのかを把握することができます。同様に、横線や斜めの線、曲線など、様々な模様に反応するフィルタを用意することで、画像の様々な特徴を捉えることができます。 フィルタを動かす様子は、虫眼鏡を使って絵の細部をじっくりと観察する様子に似ています。虫眼鏡を少しずつ動かしながら絵全体を見ていくことで、絵の細かな部分や全体の様子を理解することができます。フィルタも同様に、入力画像を少しずつずらしながら全体を調べることで、画像の局所的な特徴と全体像を把握することができます。 フィルタの動きと計算こそが畳み込み層の核心であり、CNNが画像認識で優れた成果を上げるための重要な仕組みとなっています。フィルタによって抽出された特徴は、次の層へと送られ、さらに複雑な特徴の抽出や認識へとつながっていきます。このようにして、CNNはまるで人の脳のように、画像の中から重要な情報を読み取り、理解していくことができるのです。
深層学習

LeNet:手書き文字認識の先駆け

一九九八年、エーティーアンドティー研究所のヤン・ルカン氏を中心とした研究陣が、畳み込みニューラルネットワークという、新しい仕組みを持つ計算模型を開発しました。これは後に、レネットと呼ばれるようになります。当時、手書きの文字を機械で読み取る技術は、郵便番号の自動仕分けなど、様々な分野で必要とされていましたが、なかなか精度が上がらず、困っていました。既存の方法では、なかなか良い成果が出なかったのです。レネットの登場は、この状況を一変させる画期的な出来事でした。 レネットは、手書きの数字の画像を高い精度で読み取ることができました。これは、まるで人間が目で見て判断するかのようで、当時の技術水準をはるかに超えるものでした。レネットという名前は、開発者の一人であるヤン・ルカン氏にちなんで付けられました。 レネットの成功は、深層学習という、人間の脳の仕組みを模倣した学習方法の可能性を示す重要な出来事でした。そして、画像認識技術の分野に、全く新しい時代を切り開いたのです。 レネット以前は、コンピュータに文字を認識させるのは非常に難しい作業でした。しかし、レネットは画像を小さな領域に分割し、それぞれの領域の特徴を捉えることで、全体像を把握する手法を用いました。これは、人間がものを見るときに、無意識に行っていることに似ています。例えば、私たちは「3」という数字を見るとき、全体の形だけでなく、曲線や線の組み合わせなど、細かい特徴を捉えて判断しています。レネットも同様に、画像の細部を読み取ることで、高い精度を実現したのです。 今日では、様々な画像認識技術が発展し、私たちの生活を豊かにしています。自動運転技術や顔認証システムなど、多くの技術がレネットの登場によって築かれた土台の上に成り立っていると言えるでしょう。手書き文字認識の先駆けとなったレネットの功績は、今も高く評価されています。
深層学習

画像認識の立役者:CNN

畳み込みニューラルネットワーク(CNN)は、人の脳の視覚に関する働きをまねて作られた、深層学習という種類の計算手法の一つです。特に、写真や動画といった視覚的な情報から、その特徴を掴むことに優れています。これまでの写真の認識手法では、例えば「耳の形」や「目の位置」といった特徴を人が一つ一つ決めて、計算機に教える必要がありました。しかし、CNNは大量の写真データを読み込むことで、写真の特徴を自分で学習できるのです。例えば、たくさんの猫の写真を読み込ませることで、CNNは猫の特徴を自然と理解し、猫を認識できるようになります。これは、まるで人が多くの猫を見て、猫の特徴を覚える過程に似ています。 CNNは「畳み込み層」と呼ばれる特別な層を持っています。この層では、小さなフィルターを写真全体にスライドさせながら、フィルターに引っかかる特徴を探します。このフィルターは、初期状態ではランダムな値を持っていますが、学習が進むにつれて、猫の耳や目といった特徴を捉える値へと変化していきます。まるで、職人が様々な道具を試しながら、最適な道具を見つけるように、CNNも最適なフィルターを探し出すのです。 CNNの学習には、大量のデータと、それを処理するための高い計算能力が必要です。近年、計算機の性能が飛躍的に向上したことで、CNNの性能も大きく進歩しました。現在では、写真の分類、写真の中の物体の位置特定、新しい写真の作成など、様々な分野で目覚ましい成果を上げています。CNNは、自動運転技術や医療画像診断など、私たちの生活を大きく変える可能性を秘めた技術と言えるでしょう。
深層学習

画像認識の鍵、局所結合構造

画像を認識する技術で、近年大きな成果を上げているものに畳み込みニューラルネットワークというものがあります。この技術の重要な仕組みの一つに、局所結合構造というものがあります。これは、画像の全体を一度に見るのではなく、一部分ずつ見ていくという考え方です。 たとえば、一枚の絵を見ているとしましょう。人間の目は、絵全体をぼんやりと見るだけでなく、細部まで細かく見ていきますよね。一部分に注目して、それが何なのかを判断し、次に別の部分を見て、全体像を把握していくのです。局所結合構造もこれと同じように、画像を小さな一部分ずつ見ていくことで、画像の内容を理解しようとします。 具体的には、畳み込みニューラルネットワークでは「フィルター」と呼ばれる小さな窓のようなものを使います。このフィルターを画像の上に置き、フィルターを通して見える一部分の画像とフィルターの値を掛け合わせて、その合計を計算します。この計算によって、その部分の特徴が抽出されます。次に、フィルターを少しずらして、また同じ計算を行います。これを繰り返すことで、画像全体の特徴を捉えていくのです。 一部分ずつ見ていくこの方法には、二つの大きな利点があります。一つは、計算の量を減らすことができるということです。全体を一度に計算するよりも、一部分ずつ計算する方が、計算が簡単になります。もう一つは、画像の中に含まれる模様や形の特徴を捉えやすいということです。たとえば、顔の画像を認識する場合、目や鼻、口といった部分的な特徴を捉えることで、それが顔であると判断することができます。局所結合構造は、このような部分的な特徴を効率的に捉えることができるため、画像認識に非常に役立つのです。
深層学習

全畳み込みネットワーク:画像の隅々まで理解する

近年の画像認識技術の進歩は目覚ましく、特に畳み込みニューラルネットワーク(略して畳み込みニューラル網)はその中心的な役割を担っています。畳み込みニューラル網は、画像の持つ特徴を捉える畳み込み層と、捉えた特徴をより抽象的な情報へと変換するプーリング層を交互に積み重ねる構造を持ち、この構造によって、物体認識や画像分類といった作業において高い性能を示します。 従来の畳み込みニューラル網では、ネットワークの最終層に全結合層と呼ばれる層が用いられていました。この全結合層は、入力画像全体の特徴を一つのベクトルにまとめる働きをするため、画像中の位置に関する情報が失われてしまうという欠点がありました。例えば、猫が画像のどこに写っているかという情報は、全結合層を通すことで分からなくなってしまいます。 この問題を解決するために考案されたのが、全結合層を完全に排除し、畳み込み層のみで構成された「全畳み込みネットワーク」略して全畳み込み網です。全畳み込み網は、画像のそれぞれの小さな区画(画素)に対して、それが何であるかを予測する、言い換えれば画像の各部分にラベルを付ける「意味分割」と呼ばれる作業に特化しています。 全畳み込み網を用いることで、位置情報を保持したまま画像解析を行うことが可能になります。例えば、猫の画像を入力すると、猫の輪郭に沿って「猫」というラベルが付けられます。このように、全畳み込み網は、画像のどの部分が何であるかを詳細に理解するための強力な手法であり、自動運転や医療画像診断など、様々な分野への応用が期待されています。