ドメインランダマイゼーション:シミュレーションと現実のギャップを埋める
人工知能、とりわけ強化学習という分野では、現実の世界が抱える課題を解決するために、模擬実験の環境がよく使われています。この模擬実験環境は、現実の世界では難しかったり、危険が伴ったりする状況を安全に再現できるため、情報の収集や計算手順の検証にとても役立ちます。例えば、自動運転技術の開発では、模擬実験環境で様々な交通状況や天候を再現し、安全に自動運転アルゴリズムをテストすることができます。また、ロボットの制御においても、実機を使う前に模擬実験環境で動作確認を行うことで、開発コストや時間を削減することができます。
しかし、模擬実験環境と現実の世界の間には、どうしても違いが生じてしまいます。この違いは、現実世界での模型の性能低下につながることがあります。具体的には、模擬実験環境ではうまく動作していた自動運転車が、現実世界の複雑な交通状況に対応できず、事故につながる可能性があります。また、ロボットも、模擬実験環境では想定していなかった物体の配置や摩擦の影響を受け、うまく動作しない可能性があります。このような、模擬実験環境と現実世界との間の違いによって生じる問題を「現実のずれ」と呼び、人工知能研究における大きな課題となっています。
この「現実のずれ」問題を小さくするための有望な方法の一つが、領域の無作為化です。領域の無作為化とは、模擬実験環境を意図的に変化させることで、多様な状況に対応できる人工知能モデルを学習させる手法です。例えば、自動運転の模擬実験環境では、道路の摩擦係数や天候、周囲の建物の配置などを変化させることで、様々な状況に対応できる自動運転アルゴリズムを学習させることができます。このように、領域の無作為化は、人工知能モデルの汎化性能を高め、「現実のずれ」問題を軽減する上で重要な役割を果たします。具体的には、画像認識において、照明条件や背景、物体の色などを変化させることで、様々な環境でも物体を正確に認識できる人工知能モデルを学習できます。また、ロボット制御においても、物体の形状や重さ、摩擦係数などを変化させることで、多様な物体を取り扱えるロボットを開発できます。