L1正則化:次元圧縮でモデルをシンプルに
機械学習の目的は、未知のデータに対して正確な予測を行うモデルを作ることです。しかし、学習中に訓練データに過度に適応してしまうと、未知のデータに対する予測精度が落ちてしまう「過学習」という問題が起こります。この過学習を防ぐための有効な対策の一つが、L1正則化と呼ばれる手法です。
L1正則化は、モデルの複雑さを抑えることで過学習を抑制します。機械学習モデルは、入力データから予測を行うための数式で表現されます。この数式の中には、パラメータと呼ばれる調整可能な数値が含まれており、学習を通じて最適な値に調整されます。複雑なモデルでは、これらのパラメータの値が大きくなりやすく、訓練データの些細な特徴まで捉えて過剰に適応してしまいます。L1正則化は、パラメータの絶対値の和を小さくするように働きかけることで、パラメータの値を全体的に小さく保ち、モデルを単純化します。
具体的には、損失関数に正則化項を加えることで実現します。損失関数は、モデルの予測と実際の値との間の誤差を表す指標で、学習の過程でこの値を最小にするようにパラメータが調整されます。L1正則化では、損失関数にパラメータの絶対値の和に比例する項を加えます。その結果、パラメータを大きくすると損失関数も大きくなってしまうため、学習の過程でパラメータの値が小さい値に調整されるようになります。
さらに、L1正則化は一部のパラメータを完全にゼロにするという特徴も持っています。これは、モデルにとって重要でない特徴量を自動的に選択する効果があり、モデルの解釈性を高めることにも繋がります。不要な特徴量の影響を受けずに、本当に重要な情報に基づいて予測を行うことができるため、より頑健で汎化性能の高いモデルを構築することが可能になります。