「S」

記事数:(60)

機械学習

サポートベクターマシン:概要と利点

分け隔て線学習機(サポートベクターマシン)とは、情報を調べて見分ける、仲間分けする、そして数値を予想するために使われる、頼りになる学び方の方法のことです。この方法は、あらかじめ答えの分かっている例題を使って学習する、教師あり学習というやり方に基づいています。具体的には、すでに正しい答えが分かっている情報を使って分け隔て線学習機を訓練し、まだ答えの分かっていない情報について、その答えを予想します。 分け隔て線学習機の一番の特長は、情報の集まりをうまく分割する境界線(超平面)を見つけ出すことです。この境界線は、異なるグループに属する情報点の間の距離、つまり境界線と一番近い情報点との距離を最大にするように決められます。この距離を最大にすることで、分け隔て線学習機は、例題を丸暗記するような過学習を防ぎ、まだ見たことのない情報に対しても高い確度で予想することができます。言い換えれば、訓練に使った情報だけでなく、全く新しい情報に対しても正確な予想ができるということです。 例えば、赤い玉と青い玉が入り混じった箱を想像してみてください。分け隔て線学習機は、赤い玉と青い玉を最もよく分ける線を見つけ出します。この線は、単に玉を分けるだけでなく、赤い玉と青い玉のどちらにも最も近い玉からの距離が最大になるように引かれます。このように線を引くことで、もし新しい玉が箱に追加されたとしても、その玉が赤い玉か青い玉かを高い確度で予想することができます。これが、分け隔て線学習機の基本的な考え方です。 この方法は、文字や画像の見分け、病気の診断、株価の予想など、様々な分野で使われています。分け隔て線学習機は、多くの情報から精度の高い予想を導き出すことができるため、情報科学の分野で非常に重要な役割を担っています。
アルゴリズム

STRIPS:行動計画の立て方

スタンフォード研究所問題解決機(STRIPS)は、人工知能の分野において、行動計画を自動的に作成するためのシステムです。1971年にリチャード・ファイクスとニルス・ニルソンによって開発されました。このシステムは、ロボットやソフトウェアなどが複雑な作業をどのように達成するかを自動的に決めるために使われます。目的は、目標達成に必要な一連の行動を生成することです。 たとえば、ロボットが部屋を掃除するとします。この場合、どの順番で家具を動かし、掃除機をかけ、ゴミを捨てるかなどを計画する必要があります。STRIPSはこのような計画を自動的に生成するのを助けます。具体的には、世界の状態を記述する論理式と、行動によって状態がどのように変化するかを記述するルールを使用します。 STRIPSは、初期状態、目標状態、行動の集合を入力として受け取ります。初期状態は現在の世界の状態を記述し、目標状態は達成したい状態を記述します。行動の集合は、実行可能な行動とその効果を記述します。STRIPSは、初期状態から目標状態に至る行動の列を探します。この行動の列が計画となります。 STRIPSは、幅優先探索や深さ優先探索などの探索アルゴリズムを使用して計画を生成します。探索アルゴリズムは、可能な行動の列を探索し、目標状態に到達する行動の列を見つけます。STRIPSは、効率的に計画を生成するために、様々な工夫が凝らされています。例えば、すでに探索した状態を記憶することで、同じ状態を何度も探索することを避けます。 STRIPSは、人工知能の分野における初期の計画システムの一つであり、その後の計画システムの開発に大きな影響を与えました。STRIPSは、現在でも、様々な分野で利用されています。たとえば、ロボットの制御、ゲームのAI、物流の計画などに利用されています。
機械学習

残差平方和:モデル評価の基礎

統計や機械学習の世界では、予測モデルの良し悪しを測ることはとても大切です。そのために、「残差平方和」という尺度がよく使われます。これは、簡単に言うと、モデルがどれくらい実際のデータに合っているかを表す数値です。 例えば、来月の商品の売上を予測するモデルを作ったとします。このモデルを使って予測した売上と、実際に来月売れた商品の売上には、当然ながら差が出てきます。この差のことを「残差」と言います。残差が小さいということは、予測が実際の値に近かったということなので、良いモデルと言えます。逆に、残差が大きいと、予測が外れてしまったということなので、モデルの精度が低いと言えます。 残差平方和は、この残差を二乗して、全てのデータについて足し合わせたものです。二乗する理由は、残差にはプラスとマイナスがあるので、そのまま足し合わせると、互いに打ち消しあってしまい、全体の誤差が正しく評価できないからです。二乗することで、全ての残差をプラスの値に変換し、合計することで全体の誤差を適切に測ることができます。 残差平方和の値が小さいほど、モデルの予測精度が高いと言えます。これは、残差が小さい値ばかりであれば、二乗して足し合わせても小さな値になるからです。逆に、残差平方和の値が大きい場合は、モデルの予測精度が低いということになります。 残差平方和は、モデルの精度を評価するための重要な指標であり、より良い予測モデルを作る上で欠かせないものです。様々な場面で使われているので、理解しておくと役に立ちます。
深層学習

SSD:高速・高精度な物体検出

近年、コンピュータを使って画像や映像の内容を理解する技術が急速に発展しています。中でも、画像の中から特定のものを探し出し、その場所を特定する物体検出技術は、自動運転や監視カメラ、インターネット上の画像検索など、様々な場面で活躍が期待される重要な技術です。 初期の物体検出技術では、処理に時間がかかり、動画のような動きのある映像への適用は困難でした。例えば、監視カメラの映像から不審者をリアルタイムで検知することは難しかったのです。しかし、深層学習と呼ばれる技術が登場したことで、物体検出の速度と精度は飛躍的に向上しました。深層学習は、人間の脳の仕組みを模倣した技術で、コンピュータに大量のデータを与えて学習させることで、複雑なパターンを認識できるようになります。この技術のおかげで、動画からでもリアルタイムに物体検出を行うことが可能になってきました。 物体検出技術の進化を象徴する技術の一つにSSDがあります。SSDは、Single Shot MultiBox Detectorの略で、一枚の画像から一度の処理で複数の物体を検出できるという画期的な技術です。従来の方法では、画像の様々な場所を何度も走査して物体を探す必要がありましたが、SSDは一度の処理で済むため、処理速度が大幅に向上しました。また、SSDは小さな物体も正確に検出できるため、様々な大きさの物体が混在する画像でも高い精度を達成できます。このように、SSDをはじめとする深層学習技術の進歩により、物体検出技術は日々進化を続けており、私たちの生活をより便利で安全なものにすることが期待されています。
機械学習

最高性能への挑戦:SOTAとは

「最先端技術」または「最高水準」を意味する「SOTA」とは、英語の"State-Of-The-Art"を短くした言葉です。特定の作業や分野において、今現在達成されている最高の性能を指し示す言葉です。 たとえば、写真を見分ける技術の分野でSOTAを達成したということは、他のどの仕組みに比べても高い正しさで写真を見分けられるということを意味します。 SOTAは常に変わり続けるもので、探究や開発が進むことによって絶えず更新されていきます。ある時点でSOTAを達成したとしても、すぐに他の探究によって記録が塗り替えられるかもしれないため、続いて努力していくことが大切です。 具体的な例を挙げると、自動で言葉を翻訳する技術を考えてみましょう。ある新しい翻訳の方法が開発され、これまでのどの方法よりも高い精度で翻訳できることが確認されたとします。この時、その新しい方法は翻訳技術の分野におけるSOTAとなります。しかし、技術の進歩は早く、すぐに他の研究者によってより精度の高い翻訳方法が開発されるかもしれません。そうすると、SOTAはそちらの新しい方法に移ることになります。 このように、SOTAという立場は決して安泰ではなく、常に競争にさらされているのです。このため、SOTAは技術の進歩を示す重要な指標として、研究者や技術者にとって大きな意味を持ちます。SOTAであり続けるためには、常に新しい技術を探究し続け、性能の向上に励む必要があります。SOTAを目指すことは、技術革新を促す原動力の一つと言えるでしょう。
アルゴリズム

移動平均でデータを見やすく!SMA入門

移動平均とは、刻々と変わるデータの動きを滑らかにし、全体的な流れを掴むための計算方法です。ある一定の期間のデータの平均値を次々と計算していくことで、細かい変動をならし、大きな傾向を浮かび上がらせます。 株価や為替の値動き、気温の変化、商品の売れ行きなど、時間とともに変わるデータによく使われます。例えば、過去5日の平均気温を毎日計算すると、日々の気温の上がり下がりではなく、5日間を通しての気温の傾向が分かります。 移動平均を計算する期間は、分析の目的に合わせて自由に決められます。短い期間で計算すると、直近のデータの影響が強く反映され、細かい動きに敏感な移動平均となります。逆に、長い期間で計算すると、過去のデータの影響が大きくなり、滑らかな移動平均が得られます。短期の移動平均は、最近の変化を素早く捉えるのに適しており、長期の移動平均は、大きな流れや方向性を見るのに役立ちます。 移動平均は、グラフに線として表示されることが多く、これを移動平均線と呼びます。移動平均線をデータと共にグラフに描くと、データの動きが視覚的に分かりやすくなります。例えば、株価のグラフに移動平均線を重ねると、株価の上がり下がりの激しい中でも、全体的な上昇傾向や下降傾向を捉えやすくなります。また、移動平均線は、売買のタイミングを判断する際の目安としても用いられます。 移動平均は、データの分析に役立つ、シンプルながらも強力な手法です。適切な期間を選んで計算することで、データの背後にある真の傾向を明らかにし、将来の予測にも役立てることができます。
言語モデル

積み木の世界を動かすSHRDLU

「積み木の世界」は、コンピュータと人間が言葉を介してやり取りするための、初期の画期的な試みの舞台となりました。この仮想世界は、まるで子供部屋に広げられたおもちゃ箱のようです。様々な大きさ、形、色の積み木や、四角錐、球などが配置され、単純ながらも多様な操作が可能です。この世界で活躍するのがSHRDLU(シュルドゥルー)というプログラムです。SHRDLUは、画面上に表示されたこの積み木の世界を認識し、人間の指示に従って積み木を動かしたり、積み木の状態について説明したりすることができます。 SHRDLUとの対話は、まるで人間同士の会話のようです。例えば、ユーザーが「赤い積み木を青い積み木の上に置いて」と入力すると、SHRDLUは画面上の赤い積み木を探し出し、それを青い積み木の上に丁寧に積み上げます。また、「一番大きな積み木はどこにありますか?」と質問すれば、SHRDLUは現在積み木の世界の中で最も大きな積み木を見つけて、その位置を言葉で教えてくれます。さらに、「緑の四角錐を動かせる?」といった質問にも、「はい、動かせます」や「いいえ、その四角錐は他の積み木の下敷きになっています」といった具合に、状況を理解した上で返答します。 SHRDLUの革新的な点は、単に命令を実行するだけでなく、言葉の意味や文脈をある程度理解しているかのように振る舞う点です。これは当時としては驚くべきことで、コンピュータが人間の言葉を理解し、現実世界の問題を解くための大きな一歩となりました。積み木の世界という限られた環境ではありますが、SHRDLUは見事に言葉を理解し、行動で示すことで、人とコンピュータが自然な言葉で対話する未来の可能性を示したのです。まるで魔法使いが魔法の呪文で物を操るかのように、言葉によって仮想世界を自在に操るSHRDLUの姿は、多くの人々に人工知能の未来への期待を抱かせました。
ビジネスへの応用

生成系AI活用フォーラムin品川

品川区と東京商工会議所品川支部は、事業を営む皆様のために「生成系人工知能」のビジネス活用を考える会を開きます。近年、様々な分野で技術革新が進んでいますが、中でも人工知能技術の進化は目覚ましいものがあります。とりわけ、文章や絵、音声、そして計算機の指示を作る生成系人工知能は、大きな注目を集めています。この新しい技術は、様々な仕事で効率を上げたり、新しい事業の基盤となると期待されています。 この会では、生成系人工知能とは何かという基本的なことから、実際にどのように役立てられているのかというお話、そしてこれからの見通しまで、幅広くお話しします。話を聞くだけでなく、話し合いを通して、参加者の皆様に役立つ最新の情報や、事業にどのように役立てられるのかを考えるヒントをお伝えします。 生成系人工知能を使って新しい事業を始めたいと考えている企業の皆様はもちろん、最新の技術について知りたいという方にも、情報収集や交流の貴重な機会となるでしょう。ぜひご参加ください。 会では、生成系人工知能の基礎知識を分かりやすく説明します。専門用語をなるべく使わずに、皆様が理解しやすいように工夫してお伝えしますので、初めての方でも安心してご参加いただけます。さらに、様々な業種における導入事例を紹介することで、具体的なイメージを持っていただき、自社の事業への応用可能性を検討するきっかけを提供します。加えて、人工知能技術の専門家による講演や、企業の担当者によるパネルディスカッションを通じて、活発な意見交換の場を設けます。 皆様の事業の成長に繋がるヒントを、この会で見つけていただければ幸いです。皆様のエントリーをお待ちしております。
機械学習

機械学習の解釈:SHAP値の活用

近ごろ、人工知能、中でも機械学習はめざましい進歩を遂げ、様々な分野で役立てられています。買い物でのおすすめ商品の表示や、病気の診断支援など、私たちの生活にも身近なものになりつつあります。しかし、多くの機械学習の仕組みは複雑な計算に基づいており、なぜそのような結果になったのか、その理由を人間が理解するのは難しいという問題があります。例えるなら、まるで中身の見えない黒い箱、ブラックボックスのようです。このブラックボックスの中身を解き明かし、人工知能がどのような根拠で判断を下したのかを人間が理解できるようにする取り組みが、説明可能な人工知能、あるいは説明可能なえーあいと呼ばれています。 説明可能なえーあいは、人工知能の信頼性を高める上で重要な役割を担っています。なぜなら、人間は理由も分からずに提示された結果を簡単には信用できないからです。例えば、医者が診断結果だけを告げ、その理由を説明してくれなかったら、患者は不安に感じるでしょう。人工知能も同じで、判断の根拠が分かれば、その結果への信頼感や納得感が高まります。また、誤った判断をした場合でも、その原因を特定しやすく、改善にも繋がります。さらに、人工知能がどのように判断しているかを理解することは、新たな知識発見の可能性も秘めています。例えば、人工知能が病気の診断を支援する際に、人間の医者が見落としていた重要な要素を捉えているかもしれません。このように、説明可能なえーあいは、人工知能をより安全で信頼できるものにし、社会に広く受け入れられるために不可欠な技術と言えるでしょう。
深層学習

画像認識の革新:SENet

画像を人のように見分けて、理解する技術は、今、人工知能の中でも特に注目を集めています。この技術を画像認識と言い、様々な分野で応用が期待されています。例えば、自動運転では、周りの状況をカメラで捉え、人や車、信号などを認識することで安全な運転を支援します。また、医療の分野では、レントゲン画像やCT画像から病気を早期発見するのに役立ちます。 このような画像認識の精度は近年、深層学習という技術のおかげで飛躍的に向上しました。深層学習とは、人間の脳の仕組みを模倣した技術で、大量のデータから複雑なパターンを学習することができます。特に、畳み込みニューラルネットワーク(CNN)と呼ばれる方法は、画像認識において優れた性能を発揮します。CNNは、画像の特徴を捉えるための特別な仕組みを持っており、まるで人間の目が物体の形や色を認識するように、画像の中から重要な情報を見つけ出すことができます。 2017年には、画像認識の精度を競う大会ILSVRCで、SENetという新しいモデルが登場し、大きな話題となりました。SENetは、従来の方法よりもより多くの情報を効率的に処理することができ、その結果、画像認識の精度をさらに向上させることに成功しました。この技術の進歩は、自動運転や医療診断だけでなく、私たちの生活の様々な場面で革新をもたらすと期待されています。例えば、防犯カメラの映像から不審者を自動的に検知したり、スマートフォンで撮影した写真の内容を認識して自動的に整理したりといったことも可能になります。
深層学習

SELU活性化関数:深層学習の新星

人間の脳の働きを真似た仕組みである深層学習は、人工知能の中核を担う技術です。この深層学習では、ニューラルネットワークと呼ばれるものが使われます。これは、たくさんの小さな計算単位であるノードが層状に繋がっており、まるで網目のように複雑な構造をしています。それぞれのノードは、前の層から送られてきた信号を受け取り、何らかの計算処理を行い、その結果を次の層へと送ります。この計算処理の中で、入力された信号を適切な出力信号に変換する重要な役割を担っているのが活性化関数です。 活性化関数は、モデルがどれだけうまく学習できるか、そしてどれだけの複雑な事柄を表現できるかに大きく影響します。いわば、学習の効率と表現力を左右する重要な要素なのです。適切な活性化関数を選ぶことで、より正確で高性能なモデルを作ることができます。もし、活性化関数が単純な比例関係を表す線形関数だけだと、表現できる範囲が限られてしまいます。複雑で入り組んだ現実世界の問題を解くためには、線形関数だけでは不十分であり、非線形な活性化関数が必要不可欠です。 例えば、シグモイド関数やReLU関数は、よく使われる活性化関数の代表例です。シグモイド関数は、入力信号を滑らかに変化させ、0から1の間に収まる出力信号を生み出します。これは、確率や割合を表すのに適しています。一方、ReLU関数は、入力信号が0以下の場合は0を出力し、正の場合はそのまま入力信号を出力します。このシンプルな仕組みが、学習速度の向上に繋がり、近年では特に注目を集めています。このように、それぞれの活性化関数は異なる特徴を持っています。問題の種類やデータの性質に合わせて、最適な活性化関数を選ぶことが、高性能な人工知能を開発する上で非常に重要です。
深層学習

SSD:高速・高精度な物体検出

多くの機器が視覚を持つ現代社会において、機械に画像や動画を理解させる技術は大変重要です。その中でも、画像や動画の中から特定の物体を識別し、位置を特定する物体検出技術は、様々な分野で応用されています。例えば、自動運転車では歩行者や他の車両を認識するために、監視システムでは不審な行動を検知するために、医療画像診断では病変の発見に役立っています。 近年、人間の脳の仕組みを模倣した深層学習と呼ばれる技術の進歩により、物体検出の精度は飛躍的に向上しました。この技術革新の中で、ひときわ注目を集めているのがSSD(Single Shot MultiBox Detector)という手法です。SSDは、一枚の画像から一度の処理で複数の物体を検出できるため、処理速度が速いという特徴があります。従来の手法では、画像を何度も走査する必要があったため、処理に時間がかかっていましたが、SSDはリアルタイム処理を可能にしました。 また、SSDは高精度な検出能力も兼ね備えています。様々な大きさの物体を検出するために、複数の大きさの枠を用意し、それぞれの枠で物体の有無を判断します。これにより、小さな物体から大きな物体まで、正確に検出することが可能になりました。SSDが登場する以前にも、YOLO(You Only Look Once)という高速な物体検出手法がありましたが、SSDはYOLOの後継モデルとして、更なる高速化と高精度化を実現し、物体検出技術における革新的な手法として広く利用されています。 SSDの登場は、物体検出技術の進化における大きな一歩となりました。今後も更なる技術革新により、より高精度かつ高速な物体検出技術が開発され、様々な分野での応用が期待されます。
深層学習

画像認識の革新:SENet

画像を認識する技術を競う世界的に有名な大会、二〇一七年画像ネット大規模視覚認識競技会で、素晴らしい成果が生まれました。この大会は、画像認識技術の進歩を測る重要な指標となっており、数多くの研究機関や企業がしのぎを削っています。その中で、今回ご紹介する成果はひときわ輝かしいものでした。 「注意機構エス・イー・ネット」と名付けられた新しい技術が、他の参加者を大きく引き離して優勝を勝ち取ったのです。この技術は、画像の中から重要な部分に「注意」を集中することで、認識の精度を飛躍的に向上させることができます。例えば、犬の画像を認識する場合、従来の技術では、背景や周りの物体にも注意が分散されてしまうことがありました。しかし、この新しい技術は、犬の特徴的な部分、例えば耳や鼻、尻尾などに「注意」を集中させることで、より正確に犬を認識することができるのです。 そして、この技術の驚異的な点は、その誤答率の低さです。わずか二・二五パーセントという数値は、これまでの記録を大きく塗り替えるものでした。百枚の画像を認識させた際に、間違えるのはたった二枚程度という驚異的な精度です。この成果は、画像認識技術における大きな躍進と言えるでしょう。今後、この技術は様々な分野に応用されることが期待されています。自動運転技術や医療画像診断など、人間の目では見つけにくいわずかな変化も見逃さない高い認識精度が求められる分野で、この技術は大きな力を発揮するでしょう。まさに、画像認識技術の未来を明るく照らす、輝かしい成果と言えるでしょう。
深層学習

層を飛び越える魔法、スキップ接続

近年の深層学習では、より複雑な課題を解決するために、ネットワークの層を深くすることが重要とされています。層を深くすることで、より抽象的で複雑な特徴を捉えることができると考えられています。しかし、単純に層を増やすだけでは、学習の過程で問題が発生することが知られています。特に、勾配消失問題と勾配爆発問題が深刻です。勾配消失問題は、誤差逆伝播法を用いて学習を行う際に、勾配が層を遡るにつれて小さくなり、入力に近い層のパラメータがほとんど更新されなくなる現象です。反対に勾配爆発問題は、勾配が層を遡るにつれて大きくなり、学習が不安定になる現象です。これらの問題は、層が深くなるほど顕著になります。 これらの問題を解決するために、残差学習と呼ばれる手法が提案されました。残差学習の核となるアイデアは「スキップ接続」です。スキップ接続とは、ある層の出力を、数層先の層の入力に直接加算する仕組みです。通常、ニューラルネットワークでは、各層の出力が次の層の入力となりますが、スキップ接続では、層を飛び越えて入力値が伝達されます。数式で表現すると、ある層の入力をx、その層の出力をF(x)とした場合、スキップ接続を用いると、次の層への入力はx + F(x)となります。つまり、層の出力は、入力値に加えて、その層で学習された残差F(x)のみとなります。 このスキップ接続により、勾配がスムーズに伝搬するようになります。勾配消失問題は、勾配が層を遡るにつれて小さくなることで発生しますが、スキップ接続によって入力値が直接加算されるため、勾配が小さくなりすぎるのを防ぐことができます。また、スキップ接続は、ネットワークに恒等写像の性質を与えることにも貢献します。つまり、層が増えても、少なくとも入力と同じ値を出力することが保証されるため、層を深くしても学習が阻害されにくくなります。結果として、残差学習を用いることで、非常に深いネットワークでも安定した学習が可能になり、深層学習の性能向上に大きく貢献しています。
機械学習

機械学習の解釈:SHAP値

近ごろ、機械学習、とりわけ深層学習はめざましい発展を遂げ、様々な分野で活用されています。病気の診断や車の自動運転など、私たちの生活を便利にする技術が多く生まれています。しかし、これらの技術は複雑な仕組みで動いているため、なぜそのような結果になったのかを人が理解するのが難しいという問題があります。これは「ブラックボックス」と呼ばれ、まるで中身の見えない黒い箱のようなものです。たとえば、自動運転車が事故を起こした場合、なぜその事故が起きたのか原因を特定できなければ、再発防止策を講じるのが難しくなります。また、融資の審査をAIが行う場合、なぜ融資が却下されたのか理由が分からなければ、利用者は納得できないばかりか、AIに対する不信感を抱くでしょう。こうした問題を解決するために、「説明できるAI(説明可能なAI)」が注目を集めています。説明できるAIとは、AIが出した結果について、その理由を人が理解できるように説明する技術のことです。たとえば、画像認識AIが「猫」と判断した際に、猫の耳やひげといった、どの部分に着目して判断したのかを明らかにすることで、AIの判断根拠を人が理解できるようになります。説明できるAIは、ブラックボックス問題を解決するだけでなく、AIの信頼性を高め、安心して利用できるようにするための重要な技術です。AIが出した結果だけでなく、その根拠も示すことで、利用者はAIの判断をより深く理解し、納得することができます。また、AIの開発者も、AIの仕組みをより深く理解することで、AIの精度向上や公平性の確保といった改善に繋げることができます。このように、説明できるAIは、AIが社会に広く受け入れられ、より良い形で活用されていくために不可欠な技術と言えるでしょう。
アルゴリズム

STRIPS:行動計画の立役者

行動計画とは、目指すところを叶えるための一連の動きを順序立てて決めることです。毎日の暮らしの中でも、例えば、旅行の計画や料理を作る時など、知らず知らずのうちに私たちは行動計画を立てています。 旅行の計画では、まず目的地を決め、そこへどうやって行くか、どこに泊まるか、どんな観光名所を巡るかなどを考えます。さらに、それぞれの行動にかかる時間やお金についても考えます。例えば、電車で行くのか、飛行機で行くのか、夜行バスで行くのかによって、かかる時間や費用は大きく変わります。宿泊先も、高級な旅館に泊まるのか、手軽なビジネスホテルに泊まるのか、あるいは民宿を利用するのかで、予算が変わってきます。観光名所を巡る際にも、それぞれの場所への移動手段や所要時間、入場料などを調べておく必要があります。このように、様々な要素を考慮しながら計画を立てることで、スムーズで楽しい旅行を実現できます。 料理を作る時にも、行動計画は重要です。まず、どんな料理を作りたいのかを決め、必要な材料を確認します。冷蔵庫に材料が揃っていなければ、買い物に行く必要があります。材料が揃ったら、下ごしらえを始めます。野菜を切ったり、肉や魚を下味をつけたり、それぞれの材料を適切な大きさに切り分けたりする作業が必要です。下ごしらえが終わったら、いよいよ調理です。フライパンで炒めたり、鍋で煮込んだり、オーブンで焼いたり、それぞれの料理に合った方法で調理します。火加減や加熱時間を調整することで、美味しさを引き出すことができます。最後に、料理を盛り付けます。彩り豊かに盛り付けることで、見た目も美味しくなります。このように、各工程を順序立てて行うことで、最終的に美味しい料理を作り上げることができるのです。 このように、行動計画は目的を達成するための道筋を示す重要な役割を担っています。「ストリップス」と呼ばれる技術は、このような行動計画を計算機で自動的に作り出すための、初期の仕組みとして知られています。
言語モデル

SHRDLU:対話で世界を操る

1970年代初頭、人工知能の黎明期に、テリー・ウィノグラードという研究者によって画期的なシステムが開発されました。その名はSHRDLU(シュルドゥルー)。このシステムは、人間が日常的に使う言葉、つまり自然言語を使って指示を出すと、コンピュータ画面上に表現された仮想世界で、その指示通りの動作を実行することができました。 この仮想世界は「積み木の世界」と名付けられ、様々な形の積み木が配置されています。例えば、四角いブロックや三角錐、立方体などです。これらの積み木は、赤や緑、青といった様々な色で塗られており、ユーザーは「赤いブロックを緑のブロックの上に置いて」といった具体的な指示を、英語でSHRDLUに伝えることができました。すると、SHRDLUは指示された通りに、画面上の赤いブロックを緑のブロックの上に移動させるのです。 SHRDLUの革新的な点は、単に指示された通りの動作を実行するだけでなく、指示内容の理解度も高かったことです。例えば、「赤いブロックの上に何か置いて」と指示した場合、SHRDLUは緑のブロックなど、別の積み木を赤いブロックの上に置きます。また、「一番大きなブロックはどこにある?」といった質問にも、SHRDLUは仮想世界の中から一番大きなブロックを探し出し、その場所を言葉で答えることができました。 これは当時としては驚くべき能力で、コンピュータが人間の言葉を理解し、複雑な作業を実行できる可能性を示しました。SHRDLUは、人間とコンピュータが自然言語を通じてより高度な意思疎通を行う未来への道を切り開いた、人工知能研究における重要な一歩と言えるでしょう。
機械学習

シミュレーションから現実世界へ:sim2real入門

仮想世界と現実世界を繋ぐ技術、それが仮想と現実の橋渡しです。この技術は、仮想空間での模擬実験で鍛えられた学習模型を、現実世界の問題解決に役立てる方法です。試行錯誤を通して学習を進める強化学習において、この技術は革新的な役割を担っています。 現実世界での試行錯誤は、多くの場合、時間や費用、安全性の面で大きな制約を受けます。例えば、ロボットの動作学習を現実世界の工場で行う場合、ロボットが誤動作すれば、装置の破損や作業員の怪我に繋がる可能性があります。また、学習に長時間を要すれば、その間の工場の稼働停止による損失も大きくなります。 しかし、仮想と現実の橋渡し技術を使えば、仮想空間で安全かつ低価格で様々な状況を作り出し、試行錯誤を繰り返すことができます。仮想空間では、ロボットが装置に衝突しても現実世界のような損害は発生しませんし、何度でもやり直しが可能です。また、時間を早送りすることもできるので、長期間の学習も短時間で完了できます。このように、現実世界の実験に伴う危険や費用を大幅に減らしながら、効果的な学習模型を構築できます。 具体的には、仮想空間で精巧な工場の模型を作り、そこでロボットの動作学習を行います。仮想空間での学習で十分な成果が得られたら、その学習結果を現実世界のロボットに適用します。もちろん、仮想世界と現実世界には差異があるため、そのままではうまくいかない場合もあります。そこで、仮想空間と現実世界の差を埋めるための工夫も必要となります。例えば、仮想空間での模擬実験データに現実世界のデータを少し加えて学習させたり、現実世界の状況に合わせて仮想空間の環境を調整したりするといった工夫です。このように、仮想と現実の橋渡し技術は、現実世界の問題解決に大きく貢献する、まさに仮想と現実の橋渡し役と言えるでしょう。
WEBサービス

SVG:図形描画の新しいカタチ

SVGとは、「スケーラブル・ベクター・グラフィックス」の略で、絵や図を画面に表示するための技術です。これは、「ワールド・ワイド・ウェブ・コンソーシアム」という、インターネットの基準を決める団体が作りました。 写真などでよく使われるJPEGなどの画像形式とは違い、SVGはどんなに拡大縮小しても、絵がぼやけたりしません。これは、SVGが「ベクター形式」という、図形の情報を数式で表す方法を使っているからです。数式で表されているので、どれだけ拡大しても、計算し直して滑らかな図形を表示できるのです。 この特徴は、様々な大きさの画面に対応しないといけないホームページ作りでとても役に立ちます。例えば、小さな携帯電話の画面でも、大きなパソコンの画面でも、同じSVGファイルを使ってきれいな画像を見せることができます。また、図形を拡大縮小してもファイルの大きさが変わらないので、ホームページの表示速度が遅くなる心配もありません。 SVGはテキストデータでできているので、文字と同じように、ホームページの文章の中に直接書き込むことができます。そのため、他のソフトを使わずに、ホームページのデザインを自由に変えられます。例えば、文字の色や大きさだけでなく、図形の色や形も簡単に変えられます。また、JavaScriptなどのプログラムと組み合わせることで、動きのある図形を作ることも可能です。このように、SVGは様々な場面で活用できる、柔軟性が高い技術と言えるでしょう。
ハードウエア

SRAM:高速動作の秘密

記憶の仕組みについて詳しく見ていきましょう。私たちがコンピューターで扱う情報は、全て数字の列で表されています。この数字の列を適切に保存し、必要な時にすぐに取り出せるようにするのが記憶装置の役割です。中でも、処理速度の速さで知られるのが、スタティック・ランダム・アクセス・メモリー、略してSRAMと呼ばれる記憶装置です。SRAMは、情報の基本単位を保持する小さな部屋のようなものをたくさん持っています。この小さな部屋一つ一つをセルと呼びます。それぞれのセルは、フリップフロップと呼ばれる特殊な回路でできています。 フリップフロップは、いわば小さなスイッチのようなもので、電気が流れている限り、スイッチが入った状態か切れた状態かを保つことができます。セルの中に情報を記憶するには、このスイッチの状態を利用します。例えば、スイッチが入っていれば「1」、切れていれば「0」といった具合です。SRAMは、電気が供給されている間は、このスイッチの状態を維持できるので、記憶した情報を保持し続けることができます。これが、SRAMが情報を記憶する仕組みです。 一方で、DRAMと呼ばれる別の記憶装置は、定期的に情報を書き直す必要があります。これは、DRAMが情報を保持する仕組みがSRAMとは異なり、時間が経つと情報が消えてしまうためです。SRAMは、この書き直し作業が不要なため、DRAMよりも高速に情報を処理することができます。情報をすぐに読み書きできるという利点がある反面、SRAMは電気が供給されていないと情報を保持できません。つまり、電源を切ってしまうと、記憶していた情報が全て消えてしまうのです。このような性質を持つ記憶装置を、揮発性記憶装置と呼びます。SRAMは、処理速度が求められる場面で活躍します。例えば、コンピューターの中央処理装置の一部として使われ、プログラムの実行速度向上に貢献しています。
ビジネスへの応用

顧客との絆を深めるSoE

人と人とのつながりを大切にすることは、企業活動において大変重要です。特に、お客様や取引先との良好な関係は、企業の成長に欠かせません。そこで近年、関係強化のための仕組みとして注目されているのが、顧客体験システム、いわゆる「シーオーイー」です。 従来、企業システムの中心は、記録システム、いわゆる「エスオーアール」でした。これは、業務の効率化を目的として、情報を正確に記録・管理することに重点を置いていました。しかし、シーオーイーはこれとは異なり、お客様との接点における体験価値を高めることを目的としています。 お客様が商品やサービスに触れる最初の瞬間から、購入後、そして継続利用に至るまで、あらゆる場面で心地よい体験を提供することで、満足度を高めます。例えば、使いやすい案内表示や、親切な従業員の対応、問い合わせへの迅速な回答など、お客様が「大切にされている」と感じられる工夫が重要です。 シーオーイーには、お客様との対話を円滑にするための道具や、一人ひとりに合わせたサービスを提供するための土台などが含まれます。例えば、インターネット上で気軽に質問できる仕組みや、過去の購入履歴に基づいておすすめ商品を知らせる仕組みなどです。 シーオーイーを導入することは、単に新しい道具を取り入れることではありません。お客様を中心とした考え方への転換を意味します。お客様の立場に立って考え、何を求めているのかを理解し、期待を超える体験を提供することで、強い信頼関係を築くことができます。そして、この信頼関係こそが、企業の持続的な成長の鍵となるのです。
ビジネスへの応用

Society 5.0:未来社会のデザイン

私たちは遥か昔から、より良い暮らしを求めて社会を発展させてきました。狩猟で食料を得ていた時代、農耕によって安定した生活を築いた時代、そして機械によって大量生産を実現した工業化時代を経て、現在は情報が社会の中心となる時代を生きています。そして今、情報社会の次の段階として「夢のある未来社会」が描かれています。これが「Society 5.0」と呼ばれる新たな社会の構想です。 Society 5.0では、これまでの情報社会をさらに進化させ、様々な先進技術が社会の隅々にまで浸透していきます。例えば、あらゆる物がインターネットにつながる技術や、膨大な量の情報を分析して新たな価値を生み出す技術、そして人間の知能を模倣する技術などが、私たちの生活を劇的に変えていくでしょう。街の信号は交通状況に合わせて自動で切り替わり、家の中の家電は私たちの生活習慣を学習して最適な状態を保ち、病院では医師の診断を支援するシステムが導入され、より正確で迅速な医療が提供されます。 Society 5.0は単なる技術革新ではありません。社会全体の仕組みや、私たちが大切にしている価値観をも大きく変える可能性を秘めています。例えば、高齢者が健康状態を常に把握できるようになり、自立した生活を長く続けることができるようになるかもしれません。また、地方に住む人々も都市部と同じように質の高い教育や医療を受けられるようになるかもしれません。Society 5.0は、誰もが快適で豊かな生活を送ることができる社会、まさに夢のある未来社会を実現するための、大きな一歩となるでしょう。
ハードウエア

一つのチップで全てを実現:SoC

私たちの暮らしは、様々な電子機器で溢れています。携帯電話、家庭電器、自動車など、これらはもはや生活の一部であり、なくてはならないものとなっています。これらの機器が年々小型化し、高性能になり、かつ省電力になっている背景には、システムオンチップ(SoC)と呼ばれる技術の進歩があります。 SoCとは、一つの半導体チップの中に、システム全体の機能を詰め込んだものです。以前は、それぞれの機能を別々のチップで作り、それらを繋いでいましたが、SoCではそれらを一つにまとめることで、様々な利点が生じています。 まず、基盤の面積を小さくできます。複数のチップを配置する必要がなくなり、限られたスペースにより多くの機能を搭載できます。これは機器の小型化に直結します。次に、配線の長さを短くできます。チップ間の配線が不要になるため、電気信号が伝わる経路が短くなり、処理速度が向上します。また、電気抵抗によるエネルギー損失も減り、省電力化にも繋がります。 SoCは、電子機器の小型化、高性能化、省電力化を同時に実現するため、現代社会には欠かせない技術となっています。例えば、携帯電話が小型化、高性能化し、長時間使えるようになったのもSoCのおかげです。また、家電製品の機能が豊富になり、消費電力が抑えられているのもSoCの貢献です。自動車においても、自動運転技術など高度な機能の実現にSoCは重要な役割を担っています。このように、SoCは私たちの生活をより快適で便利なものにするため、様々な場面で活躍しており、今後ますます重要性が増していくと考えられます。
WEBサービス

SOA:システム連携の新しい形

サービス指向設計(サービス指向アーキテクチャ、略してSOA)とは、複雑な情報処理の仕組み全体を、細かい機能を持った部品(サービス)の組み合わせとして考える設計思想です。それぞれの部品は独立して動くように作られ、必要に応じて組み合わせることで、全体の仕組みを作ります。 従来の情報処理の仕組み作りでは、それぞれの部分が密接に絡み合っていることが多く、一部分を変えるだけでも全体に影響が出てしまうことが課題でした。SOAでは、仕組みを独立したサービスという部品に分割することで、一部分の変化が全体に及ぼす影響を小さくし、変化に強い柔軟な仕組みを実現します。 それぞれのサービスは、他のサービスと情報をやり取りするための窓口(インターフェース)を明確に持っています。この窓口を通して、サービス同士が連携し、全体の機能を果たします。まるで、様々な種類の電化製品をコンセントに差し込んで使うように、共通の窓口を使うことで、簡単にサービスを追加したり、入れ替えたりすることができます。これにより、仕組み全体の変更や更新が容易になり、時代の変化や事業の変化への迅速な対応を可能にします。 さらに、SOAは、既に存在する仕組みの部品を再利用することを容易にします。新しく部品を一から作るのではなく、既存の部品をサービスとして組み合わせることで、開発にかかる時間や費用を削減できます。 SOAは、変化の激しい現代社会において、情報処理の仕組みをより柔軟で、無駄なく動かすための重要な考え方と言えるでしょう。まるで積み木を組み立てるように、部品を組み合わせて様々な仕組みを簡単に作ることができ、将来の変更にも柔軟に対応できるため、企業の競争力を高める上でも重要な役割を果たします。