ラッソ回帰:スパースな解への道
ラッソ回帰は、統計学や機械学習の分野で、予測を行うための手法である回帰分析の一つです。たくさんのデータの中から、ある値と別の値の関係性を見つけ出し、その関係を使ってまだわからない値を予測するために使われます。例えば、過去の気温とアイスクリームの売上のデータから、今後の気温に基づいてアイスクリームの売上を予測するといった具合です。
ラッソ回帰は、基本的な回帰分析である線形回帰に、正則化という考え方を加えたものです。線形回帰は、予測に使う値と予測したい値の関係を直線で表そうとします。しかし、あまりに複雑な直線を引こうとすると、過去のデータに過剰に適合してしまい、未来のデータに対する予測精度が落ちてしまうことがあります。これが過学習と呼ばれる現象です。ラッソ回帰では、正則化によってこの過学習を防ぎます。
ラッソ回帰で使われる正則化は、L1正則化と呼ばれ、予測に使う値に対応するパラメータの絶対値の合計を小さくするように調整されます。直線を表す式において、それぞれの値にどれだけの重みを与えるかを決めるのがパラメータです。L1正則化によって、重要でない値に対応するパラメータはゼロになり、結果としてその値は予測に使われなくなります。これは、たくさんの値の中から本当に予測に役立つ値だけを選び出す効果があり、モデルをよりシンプルで解釈しやすくします。
このように、ラッソ回帰は過学習を防ぎつつ、予測に重要な値だけを選び出すことで、精度の高い予測モデルを作ることができます。そのため、様々な分野で活用されています。