DFS

記事数:(2)

アルゴリズム

深さ優先探索で迷路を解く

深さ優先探索は、複雑な問題を解き明かすための、まるで迷路を解くような手法です。コンピュータの世界では、様々な問題を、点と線でできた図形、つまりグラフと呼ばれる形で表すことができます。このグラフは、点を節、線を辺と呼びます。たとえば、迷路は、通路を辺、分岐点や行き止まりを節として表すことができます。深さ優先探索は、このグラフの節を一つずつ調べていく方法です。出発点から始めて、可能な限り深く、行き止まりになるまで進んでいきます。まるで迷路の中で、一本道を突き進んでいくようなイメージです。行き止まりにたどり着いたら、一つ前の分岐点まで戻り、まだ進んでいない道があれば、そこから再び深く進んでいきます。これを繰り返すことで、最終的に目的の場所にたどり着くことができます。 たとえば、宝探しゲームを考えてみましょう。迷路のような地図上に宝が隠されていて、あなたは出発点から宝を探し始めます。深さ優先探索を使うと、まず一つの道を可能な限り深く進んでいきます。行き止まりにぶつかったら、一つ前の分岐点に戻り、まだ探索していない道があれば、そちらへ進んでいきます。これを繰り返すことで、最終的に宝を見つけ出すことができます。深さ優先探索は、このように行き止まりまで進んでから引き返し、別の道を試すという動作を繰り返すため、迷路探索に非常に適しています。また、この方法は、パズルを解いたり、家系図をたどったり、コンピュータネットワークの経路を調べたりと、様々な場面で活用されています。深さ優先探索は、その分かりやすさと効率性から、広く使われているのです。まるで迷路を解くように、複雑な問題を一つずつ紐解いていく、頼もしい探索方法と言えるでしょう。
アルゴリズム

深さ優先探索:奥深くまで探求

深さ優先探索とは、迷路を解くように、複雑な構造の中を隅々まで調べ上げる方法です。 例として、複雑に入り組んだ迷路を考えてみましょう。この迷路から脱出するためには、まず一つの道を出来る限り奥深く進んでいきます。そして、行き止まりに突き当たったら、一つ前の分かれ道まで戻り、まだ進んでいない別の道を進んでいきます。これを繰り返すことで、最終的には迷路の出口にたどり着くことができます。深さ優先探索もこれと同じ考え方で、複雑な構造の中を、可能な限り深く掘り下げて探索していきます。 このような探索方法は、特にグラフや木構造と呼ばれる、 interconnected network のようなデータ構造を調べる際に役立ちます。これらの構造は、節と枝が複雑に絡み合って構成されており、深さ優先探索を用いることで、特定の情報を見つけ出したり、構造全体を漏れなく調べ上げたりすることができます。 例えば、一族の家系図を思い浮かべてみてください。家系図は、先祖から子孫へと枝分かれしていく木構造です。深さ優先探索を使って家系図を辿ることで、特定の先祖を見つけたり、家系全体の繋がりを理解したりすることが可能です。このように、深さ優先探索は、様々な場面で活用できる、強力な探索手法と言えるでしょう。