AI

記事数:(356)

機械学習

声で感情を読み解くAI

近年、人工知能技術の進歩は目覚ましく、様々な分野で活用されています。中でも、音声認識の技術は目覚ましい発展を遂げ、私たちの暮らしに深く入り込みつつあります。以前は、人間の声を認識し文字情報に変換する技術が主流でしたが、今では声から感情を読み取る人工知能が登場しています。 この人工知能は、言葉の意味ではなく、声の高さや強さ、話す速さといった物理的な特徴を分析することで、喜びや悲しみ、怒りなど、様々な感情を認識します。つまり、日本語でも英語でも、どの言語で話しているかは関係なく、声そのものから感情を理解できるのです。これは、世界各国の人々が交流する現代社会において、言葉の壁を越えた意思疎通を可能にする革新的な技術と言えるでしょう。 例えば、外国語で話しかけられた時、言葉の意味は分からなくても、相手が怒っているのか喜んでいるのかを声の調子で判断した経験は誰しもあるでしょう。この人工知能は、まさにその能力を機械で実現したものです。具体的には、声の周波数や波形、音の大きさの変化などを細かく分析し、感情と結びついた特徴を抽出することで、感情を特定します。 この技術は、様々な場面で応用が期待されています。例えば、コールセンターでは、顧客の声から感情を分析することで、適切な対応を促すことができます。また、教育現場では、生徒の声から理解度や集中度を把握し、学習指導に役立てることができます。さらに、エンターテインメント分野では、登場人物の感情をよりリアルに表現するなど、表現の可能性を広げることにも繋がります。このように、声から感情を読み取る人工知能は、私たちの社会をより豊かに、より便利にする可能性を秘めています。
推論

世界初のエキスパートシステム:DENDRAL

一九六〇年代、計算機科学の黎明期に、スタンフォード大学の研究者エドワード・ファイゲンバウム氏とそのチームは、画期的な人工知能システム「DENDRAL(デンドラル)」を開発しました。このシステムは、未知の有機化合物の構造を特定することを目的としていました。 当時、質量分析法などの分析技術は発展を遂げていましたが、得られたデータから化合物の構造を決定するには、熟練した化学者の知識と経験が不可欠でした。分析結果として得られる複雑なスペクトルデータは、まるで暗号文のように難解で、その解釈には高度な専門知識と長年の経験に基づく直感が求められました。熟練の化学者は、膨大な知識と経験を駆使し、試行錯誤を繰り返しながら、化合物の構造を推定していました。しかし、この作業は非常に時間と労力を要するものでした。 DENDRALは、この複雑で時間のかかるプロセスを自動化し、計算機が化学者の役割を担うことを目指したのです。具体的には、質量分析計から得られたデータを入力すると、DENDRALは可能な化学構造を生成し、それらの構造が質量分析データと一致するかどうかを検証しました。そして、最も可能性の高い構造を候補として提示しました。 これは、特定の分野の専門家の知識を計算機に組み込み、複雑な問題を解決させるという、エキスパートシステムの先駆けとなりました。DENDRALは、化学の専門知識をルールとして表現し、推論エンジンを用いてこれらのルールを適用することで、まるで人間の専門家のように推論を行いました。DENDRALの成功は、人工知能研究に大きな影響を与え、その後のエキスパートシステム開発の道を開きました。人工知能が特定の分野の専門家のように振る舞うことができるという可能性を示した、まさに画期的な出来事だったと言えるでしょう。
深層学習

画像を切り分ける技術:セグメンテーション

近年、目覚しい進歩を遂げている画像認識技術は、写真に写る物体が何かを判別するだけでなく、その位置や形まで特定できるようになりました。この技術は私たちの身近なところで、例えば、スマートフォンでの顔認証や自動運転技術など、様々な分野で活用されています。そして、この技術の進歩を支える重要な要素の一つが、「画像分割」です。 画像分割とは、画像を小さな点の一つ一つまで細かく分類し、それぞれの点がどの物体に属するかを識別する技術です。例えば、街の風景写真を解析するとします。従来の画像認識では、「建物」「道路」「車」「人」などが写っていると認識するだけでした。しかし、画像分割を用いると、空や建物、道路、車、人といった具合に、点の一つ一つが何に該当するかを精密に分類することができます。まるで、写真の点一つ一つに名前を付けていくような作業です。 これは、単に写真に何が写っているかを認識するだけでなく、写真の構成要素を理解するという意味で、より高度な画像認識技術と言えます。例えば、自動運転技術においては、前方の物体が「人」であると認識するだけでなく、その人の輪郭や姿勢まで正確に把握することで、より安全な運転を支援することが可能になります。また、医療分野においても、画像分割は患部の正確な位置や大きさを特定するのに役立ち、診断の精度向上に貢献しています。このように、画像分割技術は、様々な分野で応用され、私たちの生活をより豊かに、より安全なものにする可能性を秘めていると言えるでしょう。
推論

マイシン:初期のエキスパートシステム

ある特定の分野に秀でた専門家の持つ知識や豊富な経験を、コンピュータプログラムの中に組み込むことで、その道の専門家と同じように考えたり判断したりするプログラムのことを、専門家システムと呼びます。これは、人が行う複雑な思考の流れをコンピュータで再現することで、コンピュータに高度な問題解決能力を持たせようとする技術です。 専門家システムは、専門家の数が足りない部分を補ったり、物事を決めるときの手助けをする道具として、様々な分野で活用が期待されました。 専門家システムが目指すのは、特定の分野における専門家の思考プロセスを模倣することです。専門家は、長年の経験や学習によって得られた知識を元に、複雑な状況を分析し、適切な判断を下します。このプロセスをコンピュータで再現するために、専門家システムは「知識ベース」と「推論エンジン」という二つの主要な構成要素から成り立っています。知識ベースには、専門家から聞き取った知識や経験が、ルールや事実といった形式で蓄積されます。推論エンジンは、この知識ベースに蓄えられた知識を用いて、入力された情報に基づいて推論を行い、結論を導き出します。 初期に開発された専門家システムの一つに、マイシンというシステムがあります。マイシンは、血液中の細菌感染症を診断し、適切な抗生物質を提案するために開発されました。マイシンは、専門家システムの可能性を示す画期的なシステムとして注目を集め、その後の専門家システム研究に大きな影響を与えました。しかし、専門家の知識をコンピュータに落とし込むことの難しさや、知識ベースの維持管理の負担の大きさなど、いくつかの課題も明らかになりました。これらの課題を克服するために、様々な改良や新たな技術開発が進められています。例えば、機械学習の手法を用いて、大量のデータから自動的に知識を抽出する研究などが行われています。このような技術の進歩によって、専門家システムは今後さらに発展し、様々な分野でより高度な問題解決に貢献していくことが期待されています。
機械学習

生成モデル:データ生成の仕組み

生成モデルとは、与えられたデータがどのように作られたのか、その仕組みを学び、真似ることを目的とした機械学習の手法です。私たちが普段見ている写真や文章、音楽といったデータは、それぞれ異なる作り方を持っていると考えられます。例えば、写真は光の当たり方や構図、被写体によって変化し、文章は言葉の選び方や文法によって構成され、音楽は音の高さやリズム、楽器によって奏でられます。生成モデルは、これらのデータに共通する、隠れた生成の仕組みを確率という形で捉え、データの背後にあるルールを明らかにしようとします。 具体例として、多くの猫の写真を生成モデルに学習させたとしましょう。生成モデルは、学習を通して、猫の見た目や模様、形といった特徴を確率分布という形で学び取ります。そして、学習した確率分布に基づいて、実在する猫の写真と似た新しい猫の写真を作り出すことができます。これは、まるで画家が猫の絵を描くように、モデルが猫の写真を生み出すことを意味します。このように、生成モデルはデータの生成過程を学ぶことで、既存のデータに似た新しいデータを作り出すことが可能になります。 この技術は、様々な分野で応用が期待されています。例えば、実在しない人物の顔画像を生成することで、個人のプライバシーを守りつつ、人工知能の顔認識技術の開発に役立てることができます。また、新しい薬の分子構造を生成することで、新薬開発の効率を高めることも期待されています。さらに、芸術分野では、新しい絵画や音楽を生み出すことで、創造的な表現の可能性を広げることが期待されています。このように、生成モデルはデータの生成過程を学ぶことで、様々な分野で革新的な変化をもたらす可能性を秘めています。
深層学習

深層学習:未来を創る人工知能

深層学習とは、人間の脳の仕組みをヒントに作られた、人工知能を実現するための一つの方法です。まるでたくさんの神経細胞が幾重にも重なり合って情報を処理する人間の脳のように、深層学習もまた、多層構造の人工神経回路網を使って、膨大な量のデータから複雑な規則性や特徴を見つけ出すことを得意としています。 この人工神経回路網は、入力層、隠れ層、出力層と呼ばれる層が何層にも積み重なった構造をしています。入力層から入ったデータは、各層の繋がりを介して処理されながら、最終的に出力層から結果が出力されます。層が深く、繋がりも複雑なため「深層」学習と呼ばれ、この複雑さが、従来の機械学習では難しかった、より高度な判断や予測を可能にしています。 従来の機械学習では、人間がデータの特徴を一つ一つ設計し、それをコンピュータに教えていましたが、深層学習は、データの中から重要な特徴を自ら見つけ出すことができます。このため、人間が特徴を設計する手間が省けるだけでなく、人間が見落としてしまうような、複雑で微妙な特徴も捉えることができるようになりました。 深層学習は、すでに様々な分野で目覚ましい成果を上げています。例えば、写真に写っているものが何かを認識する画像認識、人の声を文字に変換する音声認識、人間の言葉を理解し、翻訳や文章作成を行う自然言語処理など、私たちの生活にも身近なところで活躍しています。深層学習の技術は、今後も様々な分野で応用され、私たちの社会をより豊かにしていくことが期待されています。
ビジネスへの応用

他企業との連携で拓くAIビジネスの未来

近頃、人工知能(AI)技術はめざましい進歩を遂げ、様々な産業分野でこれまでになかった新しいサービスや商品が生み出されています。しかし、AI技術を事業で活用するには、高い専門知識や多額の開発費用が必要となる場合が多く、企業単独での開発には限界があります。そこで、他社や他業種との協力が、AI事業を成功させるための重要な鍵となります。 全ての開発を自社のみで行うよりも、それぞれの会社が持つ得意分野を活かし、協力することで、より質の高い製品やサービス提供が可能となります。例えば、AIの計算手順開発に特化した会社と、特定の業界における豊富な情報や技術を持つ会社が協力すれば、より効果的なAI解決策を速やかに開発できます。AIの計算手順開発会社は、高度な計算手順を作る技術を持っていますが、特定の業界の知識は不足している場合があります。一方、特定の業界の会社は、豊富な情報や技術を持っているものの、AIの計算手順開発の専門知識は限られています。両社が協力することで、お互いの不足を補い合い、より良い結果を生み出すことができます。 また、異なる業種との協力は、新しい市場を開拓したり、技術革新を生み出したりすることにも繋がります。近年注目されている、製造業と情報技術会社の協力による、賢い工場作りなどはその良い例と言えるでしょう。製造業は、製品を作る技術や工場運営のノウハウを持っています。情報技術会社は、情報処理や通信技術に優れています。両社が協力することで、工場の機械をインターネットに繋ぎ、情報を集めて分析することで、生産効率を上げたり、品質を向上させたりすることが可能になります。このように、会社同士の協力は、AI事業の成長を速める上で欠かせない要素となっています。 AI技術は今後ますます発展していくと予想されるため、会社同士の協力関係を築き、共に成長していくことが重要です。
ビジネスへの応用

データ品質でAIをパワーアップ

人工知能(じんこうちのう)は、近年めざましい発展(はってん)を遂(と)げ、さまざまな分野(ぶんや)で活用(かつよう)されています。身近なところでは、顔認証(かおにんしょう)システムや音声認識(おんせいにんしき)など、私たちの生活に浸透(しんとう)しつつあります。また、医療(いりょう)や金融(きんゆう)、製造業(せいぞうぎょう)など、専門的(せんもんてき)な分野でも、人工知能は大きな役割(やくわり)を担(にな)っています。しかし、人工知能が期待どおりの成果(せいか)を出すためには、質の高いデータが必要不可欠です。 人工知能は、大量のデータからパターンや規則性(きそくせい)を学習し、それをもとに判断や予測を行います。例えるなら、料理人(りょうりにん)が様々な食材(しょくざい)と調味料(ちょうみりょう)の組み合わせを学び、新しい料理を生み出す過程(かてい)に似ています。もし、料理人が腐った食材を使って料理を作ったらどうなるでしょうか。当然、美味しい料理はできませんし、食中毒(しょくちゅうどく)を引き起こす危険(きけん)さえあります。これと同じように、人工知能に質の低いデータを与えると、誤った判断や予測につながる可能性があります。例えば、医療診断(いりょうしんだん)で誤診(ごしん)につながったり、自動運転(じどううんてん)で事故(じこ)を起こしたりするかもしれません。 質の高い人工知能を実現するためには、データの品質管理(ひんしつかんり)が非常に重要です。データの正確性(せいかくせい)、完全性(かんぜんせい)、一貫性(いっかんせい)などを確認し、必要に応じて修正(しゅうせい)や追加(ついか)を行う必要があります。また、データの偏り(かたより)にも注意が必要です。特定の属性(ぞくせい)のデータばかりで学習した人工知能は、他の属性に対しては正しく機能(きのう)しない可能性があります。そのため、多様(たよう)なデータを用いて学習させることが重要です。データ品質(ひんしつ)インテリジェンスは、データの品質を評価(ひょうか)し、改善(かいぜん)するための重要な道具となります。これにより、より信頼性(しんらいせい)の高い、高精度な人工知能を実現することが可能になります。
機械学習

誰でも使える宝の山:オープンデータセット

誰もが自由に使えるデータの集まり、それがオープンデータセットです。様々な団体が、集めた情報を惜しみなく公開しています。これらのデータは、写真や音声、文字、数字など、様々な形で提供されています。データは現代の宝と言えるでしょう。あらゆる分野で活用され、私たちの生活をより豊かにしています。しかし、質の高いデータをたくさん集めるには、時間もお金もかかります。だからこそ、誰でも自由に使えるオープンデータセットは、新しい技術やサービスを生み出すための大切な資源と言えるのです。 例えば、人工知能を育てるための教材として、オープンデータセットは活用されています。写真を見て何が写っているかを理解する技術や、人間の話す言葉を理解する技術の向上に役立っています。また、会社の活動にも役立ちます。市場を調べたり、お客さんの特徴を分析したりすることで、新しい事業の機会を見つけたり、今ある事業をより良くしたりすることができるのです。 オープンデータセットは、様々な種類があります。例えば、大量の写真と、写真に何が写っているかという情報がセットになったもの、人間が話した言葉を文字に起こしたもの、天気や気温など様々な数値が記録されたものなどがあります。これらのデータは、特定の条件を満たせば誰でも利用できます。利用条件はデータによって異なりますが、多くの場合、出典を明記すれば自由に利用できます。また、一部のデータは加工や再配布も認められています。 このように、オープンデータセットは、様々な分野で新しいものを生み出す力を持っています。技術の進歩を加速させたり、新しい事業を生み出したり、社会の課題を解決したりするなど、様々な可能性を秘めているのです。今後ますます重要性を増していくことでしょう。
機械学習

AI性能指標:精度評価の鍵

人工知能の良し悪しを見極めるには、様々な方法があります。これらをまとめて、性能指標と呼びます。性能指標とは、人工知能がどれほどきちんと仕事をこなせるか、どれほど賢く学習できているかを数字で表したものです。まるで通知表の成績のように、人工知能の能力を客観的に測るための物差しなのです。 性能指標には様々な種類があり、それぞれが人工知能の異なる側面を評価します。例えば、ある指標は人工知能がどれほど正確に答えを出せるかを測り、別の指標は人工知能がどれほど速く答えを出せるかを測るといった具合です。ですから、何を知りたいかによって、使うべき指標も変わってきます。目的や仕事内容に合った適切な指標を選ぶことが重要です。 人工知能同士を比べたり、特定の人工知能の長所と短所を理解するためには、性能指標が欠かせません。例えば、新しい人工知能が既存のものより優れているかどうかを判断する際に、性能指標の数値を比較することで、どちらがより優れているかを客観的に判断できます。また、特定の人工知能が苦手な仕事内容を把握することで、その人工知能の改善点を明確にすることができます。 性能指標は、人工知能開発における羅針盤のような役割を果たします。船が目的地へたどり着くために羅針盤を使うように、人工知能の開発者は性能指標を使ってより良い人工知能を作り上げます。指標の数値を見ながら、人工知能の学習方法を調整したり、構造を改良することで、より高い性能と信頼性を実現できます。適切な性能指標を用いることで、私達の生活を豊かにする、より高性能で信頼性の高い人工知能が生まれるのです。
その他

ジェリー・カプラン:人工知能の未来を見つめる

ジェリー・カプラン氏は、人工知能の世界で広く知られる、アメリカの計算機科学者です。彼の研究活動の中心は、人間のように考える機械を作ること、つまり人工知能です。この分野での彼の貢献は非常に大きく、世界的に評価されています。 カプラン氏は、ペンシルベニア大学で計算機科学の博士号を取得しました。この名門大学での学びは、彼に計算機科学の深い知識と、最先端の研究手法を授けました。その後、スタンフォード大学で人工知能の研究に没頭しました。スタンフォード大学は人工知能研究の拠点として知られており、ここでカプラン氏はさらに知識と経験を深めました。 彼は研究者であるだけでなく、起業家としての才能も持ち合わせています。これまでに、GOコーポレーションやオンセールといった複数の会社を設立しました。GOコーポレーションは、世界初のタブレット型計算機を開発したことで知られています。また、オンセールはインターネットを使った競売の先駆けとなり、後の電子商取引の発展に大きく貢献しました。これらの会社での経験は、彼に技術開発だけでなく、経営や市場戦略といったビジネスの側面についても深い理解をもたらしました。 カプラン氏の人工知能に対する造詣の深さと、多様な経験は、人工知能の発展に大きく寄与しています。彼は常に未来を見据え、技術の進歩が社会にどんな影響を与えるのかを鋭く分析しています。人工知能、機械学習、自然言語処理といった幅広い分野に精通しており、常に最先端の研究に挑んでいます。 カプラン氏は、大学の研究室に閉じこもるだけでなく、産業界との連携も積極的に行っています。彼の持つ知識や技術は、多くの会社の新技術開発に役立っています。学術界と産業界の橋渡し役を担うことで、人工知能の社会実装を加速させているのです。
ビジネスへの応用

AIと報道:世界AI原則を読み解く

近ごろ、人工知能(AI)の技術は、とりわけ文章を作るAIの分野で、めざましい発展を見せています。それと並んで、AIが社会全体に与える影響、中でも報道への影響について、心配の声が高まっています。記事の盗用や間違った情報の広がりといった危険性は、報道への信頼を揺るがす重大な問題です。こうした状況を背景に、世界の報道機関やメディア関係の団体が力を合わせ、AI技術の正しい使い方と倫理的な規範を示した指針をまとめました。これが「世界AI原則」です。 この原則が作られたのには、AI技術の急速な進歩に対応する狙いがあります。AIはニュースの収集や情報の分析など、様々な場面で役立つ可能性を秘めています。しかし、同時に、AIの利用によって記事の質が落ちたり、記者の仕事が奪われたりするのではないかといった不安も広がっています。「世界AI原則」は、こうしたAI技術の恩恵とリスクのバランスをどう取るべきか、方向性を示すものです。 もう一つの重要な点は、報道の信頼性を守ることです。AIが作った文章が、まるで人間が書いたかのように広まることで、読者は何が真実なのか分からなくなる恐れがあります。また、AIが特定の意見に偏った情報を作り出すことで、世論が操作される危険性も懸念されています。「世界AI原則」は、AIを利用する際に、情報の正確さや透明性を確保することを重視し、読者の信頼を損なわないようにするための基準を示しています。 「世界AI原則」は、AI技術の発展と報道の健全な発展の両立を目指すための、大きな一歩と言えるでしょう。この原則を基に、報道機関やメディア関係者が協力し、AI時代における報道のあり方を考えていくことが重要です。
深層学習

人工知能アルファ碁の衝撃

アルファ碁とは、囲碁を打つ人工知能の仕組みのことです。この仕組みは、イギリスの会社であるディープマインド社が考え出しました。囲碁は、盤面がとても広く、どこに石を置くかの組み合わせが数え切れないほどたくさんあります。そのため、コンピュータが人間に勝つことは難しいと言われてきました。 しかし、アルファ碁はこの難しい問題を「深層学習」という方法を使って乗り越えました。深層学習とは、人間の脳の仕組みをまねた学習方法です。たくさんの情報から、物事の特徴やパターンを自然と学ぶことができます。アルファ碁は、過去の囲碁の棋譜データをたくさん学習しました。そのおかげで、プロの棋士にも負けない高度な打ち方を覚えることができたのです。 アルファ碁の強さは、2015年に初めてプロの棋士に勝ったことで世界中に衝撃を与えました。これは、人工知能が人間の知性を超えることができるかもしれないことを示した、歴史に残る出来事でした。 アルファ碁は、自己対戦を繰り返すことでさらに強くなりました。自己対戦とは、自分自身と何度も対戦することです。この方法で、アルファ碁は人間が考えつかないような独創的な打ち方を生み出すようになりました。そして、世界トップレベルの棋士にも勝利するまでになりました。アルファ碁の登場は、人工知能の可能性を大きく広げ、様々な分野での活用に期待が高まりました。人工知能が、囲碁の世界だけでなく、私たちの社会を大きく変える可能性を秘めていることを示したと言えるでしょう。
機械学習

人工知能の父、ジェフリー・ヒントン

ジェフリー・ヒントン氏は、人工知能研究、特に深層学習の分野において世界的に有名な研究者です。その経歴は、人工知能技術の発展と深く結びついています。彼は、計算機科学と認知心理学という異なる学問分野を組み合わせ、人間の脳の仕組みを模倣したニューラルネットワークの研究に打ち込みました。 人工知能研究が停滞していた時代、いわゆる「冬の時代」にあっても、ヒントン氏は自らの信念を貫き、研究を続けました。そして、ついに深層学習という画期的な手法を確立したのです。この手法は、コンピュータに大量のデータを与えて学習させることで、人間のように複雑なパターンを認識することを可能にしました。 現在、この深層学習は、写真の内容を理解する画像認識、音声を文字に変換する音声認識、人間が話す言葉を理解する自然言語処理など、様々な分野で目覚ましい成果を上げています。私たちの日常生活に欠かせない技術の多くは、ヒントン氏の研究成果に基づいています。例えば、スマートフォンで写真を撮るときに自動的に顔を認識する機能や、音声で指示を出すと反応するスマートスピーカーなどは、深層学習の技術を活用したものです。 ヒントン氏は、トロント大学で長年教授として学生を指導し、多くの優秀な研究者を育てました。さらに、人工知能研究の共同体の発展にも大きく貢献しました。また、Googleでも人工知能研究に携わり、企業の技術開発にも大きな影響を与えました。人工知能分野への多大な貢献から、まさに「人工知能の父」と称されるにふさわしい人物です。
推論

推論と探索:第一次AIブームの幕開け

考える機械を作りたい、そんな大きな夢から人工知能の歴史は幕を開けました。人間のように考え、判断し、問題を解決する機械、これは遠い昔からの憧れでした。そして、一九五〇年代半ばから一九六〇年代にかけて、初めての人工知能ブームが到来しました。この時代は「推論」と「探索」という二つの言葉が鍵でした。 「推論」とは、ある事実をもとに、論理的に筋道を立てて結論を導き出すことです。例えば、全ての鳥は空を飛ぶ、すずめは鳥である、ゆえにすずめは空を飛ぶ、といった具合です。コンピューターにこのような推論能力を与えることで、人間のように考えさせる試みがなされました。 もう一つの鍵である「探索」は、様々な可能性の中から最適な答えを見つけることです。迷路を解く場面を想像してみてください。いくつもの分かれ道の中から正しい道を探し出すには、先々まで見通す能力が必要です。人工知能にも、このような探索能力が求められました。 当時のコンピューターは、まだ性能が限られていましたが、研究者たちは熱い情熱を持って研究に取り組みました。簡単なゲームやパズルを解くプログラムが作られ、将来への期待が大きく膨らんでいきました。まるで人間のように考える機械の実現は、もうすぐそこまで来ているように思われました。しかし、この第一次人工知能ブームは、やがて壁にぶつかり、終焉を迎えることになります。
ビジネスへの応用

AI運用とプロセスの再構築

人工知能を導入したにも関わらず、思ったような成果が出ない、あるいは費用や時間が多くかかってしまうといった問題にぶつかることはよくあります。このような状況は、今のやり方を見直す必要があるという知らせです。人工知能は、導入するだけで全てがうまくいく魔法の道具ではありません。導入後の使い方の手順を細かく計画し、常に良くしていく必要があります。 うまく使うためには、人工知能の特徴を理解し、それに合った仕事の手順を作ることが大切です。 今の仕事の手順に人工知能を無理やり合わせるのではなく、人工知能の力を最大限に引き出すための手順を新しく考える必要があります。これは、新しい機械を導入した時に、その機械の性能を最大限に活かすための作業手順を決めるのと同じです。人工知能も、適切な使い方の手順があって初めて本当の価値を発揮できるのです。 例えば、人工知能による顧客対応を導入したとします。導入前に想定していたのは、よくある質問への対応を自動化し、担当者の負担を減らすことでした。しかし、実際には想定外の質問が多く、結局担当者が対応しなければならず、かえって負担が増えてしまったというケースが考えられます。このような場合は、人工知能が対応できる範囲を明確にする、あるいは人工知能が学習するためのデータをもっと集めるといった対策が必要です。また、担当者への研修を行い、人工知能との連携方法を理解してもらうことも重要です。さらに、人工知能の精度を定期的に評価し、改善していく必要があります。どの質問にうまく対応できているか、逆にどの質問にうまく対応できていないかを分析し、その結果を基に人工知能の学習データを追加したり、修正したりすることで、精度の向上を図ります。このように、人工知能を導入した後も、継続的な見直しと改善が必要です。人工知能は導入して終わりではなく、使い続ける中で育てていくものなのです。
推論

推論:知性の核心

推論とは、既に知っている事柄を土台として、まだ知らない事柄を予想したり、論理的に筋道を立てて考えたりする行為のことです。簡単に言うと、今ある知識を使って、次に何が起こるか、何が真実かを考えることです。例えば、空一面に暗い雲が広がり、肌寒い風が吹いてきたとします。すると、もうすぐ雨が降るだろうと予想しますよね。これは、過去の経験や知識に基づいて、現在の状況から未来の状態を推論した一例です。 天気予報以外にも、私たちの日常生活は推論で溢れています。例えば、相手の表情を見て、怒っているのか、喜んでいるのか、その感情を読み取ろうとします。これは、表情という情報から、相手の心の状態を推論しているのです。また、本や文章を読んでいる時、行間、つまり書いていない部分に隠された真意を汲み取ろうとするのも推論の一種です。行間を読むとは、文字として表現されていない情報を、文脈や背景知識から推測することを指します。 推論は、複雑で情報量の多いこの世界を理解し、適切な行動を選ぶために欠かせない能力です。もし推論する能力がなかったら、目の前の状況を理解することも、次に何が起こるかを予測することもできません。例えば、私たちが言葉の意味を理解したり、新しい考え方を身につけたりする時にも、推論は重要な役割を果たしています。新しい情報に出会った時、それを既存の知識と結びつけて理解していくのです。それはまるで、バラバラになったパズルのピースを一つ一つ組み合わせ、全体像を明らかにしていく過程のようです。断片的な情報をつなぎ合わせ、全体を把握していく、これこそが推論の本質と言えるでしょう。この能力こそ、人間が知性を持つ上で、なくてはならない要素の一つなのです。
ビジネスへの応用

DXで変わる未来

技術革新は、私たちの社会や経済の姿を大きく変えつつあります。この変化の波の中で、よく耳にする「デジタルトランスフォーメーション」、略して「DX」という言葉は、まさにこの変革の中心を担う重要な考え方です。DXとは、電子技術を利用して、社会や組織の仕組み、仕事のやり方などを抜本的に変えていくことを意味します。 具体的には、考える力を持つ機械や、あらゆる機器をインターネットにつなぐ技術などを活用し、これまで人が担ってきた作業を自動化したり、効率を高めたりすることが挙げられます。例えば、工場では機械が自動で製品を作り、検査する工程が進むでしょう。事務所では、書類作成やデータ整理などの作業を、機械が代わりに行ってくれるようになるでしょう。このように、DXは私たちの仕事のやり方そのものを大きく変える可能性を秘めています。 さらに、DXは企業の成長にも大きく貢献します。快適な仕事場を作ることで、社員のやる気を高め、より良い成果に繋げられます。また、今までにない新しい商品やサービスを生み出すことで、企業はさらに発展していくことが期待されます。例えば、インターネットを通じて顧客の好みや行動を分析し、一人ひとりに合わせたサービスを提供するといったことが可能になります。これは、従来の方法では考えられなかった、新しい価値の創造と言えるでしょう。 DXは、単に新しい技術を導入するだけではありません。企業の文化や社員の考え方、働き方までも変革していく、組織全体の大きな変化です。社員一人ひとりがDXの意義を理解し、積極的に取り組むことで、より良い未来を築くことができるでしょう。
アルゴリズム

STRIPS:行動計画の立役者

行動計画とは、目指すところを叶えるための一連の動きを順序立てて決めることです。毎日の暮らしの中でも、例えば、旅行の計画や料理を作る時など、知らず知らずのうちに私たちは行動計画を立てています。 旅行の計画では、まず目的地を決め、そこへどうやって行くか、どこに泊まるか、どんな観光名所を巡るかなどを考えます。さらに、それぞれの行動にかかる時間やお金についても考えます。例えば、電車で行くのか、飛行機で行くのか、夜行バスで行くのかによって、かかる時間や費用は大きく変わります。宿泊先も、高級な旅館に泊まるのか、手軽なビジネスホテルに泊まるのか、あるいは民宿を利用するのかで、予算が変わってきます。観光名所を巡る際にも、それぞれの場所への移動手段や所要時間、入場料などを調べておく必要があります。このように、様々な要素を考慮しながら計画を立てることで、スムーズで楽しい旅行を実現できます。 料理を作る時にも、行動計画は重要です。まず、どんな料理を作りたいのかを決め、必要な材料を確認します。冷蔵庫に材料が揃っていなければ、買い物に行く必要があります。材料が揃ったら、下ごしらえを始めます。野菜を切ったり、肉や魚を下味をつけたり、それぞれの材料を適切な大きさに切り分けたりする作業が必要です。下ごしらえが終わったら、いよいよ調理です。フライパンで炒めたり、鍋で煮込んだり、オーブンで焼いたり、それぞれの料理に合った方法で調理します。火加減や加熱時間を調整することで、美味しさを引き出すことができます。最後に、料理を盛り付けます。彩り豊かに盛り付けることで、見た目も美味しくなります。このように、各工程を順序立てて行うことで、最終的に美味しい料理を作り上げることができるのです。 このように、行動計画は目的を達成するための道筋を示す重要な役割を担っています。「ストリップス」と呼ばれる技術は、このような行動計画を計算機で自動的に作り出すための、初期の仕組みとして知られています。
ビジネスへの応用

顧客管理を革新する生成AI

顧客との繋がりを大切にし、保ち続けるために、会社にとって顧客管理(顧客関係管理)は欠かせない道具です。昔からある顧客関係管理は、顧客の情報を一箇所に集め、販売、宣伝、顧客対応といった部署が協力して顧客に接することを可能にしてきました。しかし、近ごろ、人工知能、特に文章や画像などを作り出す人工知能の登場によって、顧客関係管理は新たな発展を見せています。 文章や画像などを作り出す人工知能は、たくさんの情報から学び、人間のように文章、絵、音声などを作る力を持つ人工知能です。この人工知能を顧客関係管理に取り入れることで、顧客がより良い経験をすること、仕事の効率を高めること、新しい商売の機会を生み出すことといった大きな利点が期待できます。 従来の顧客関係管理では、担当者が自分の手で顧客の情報を入力し、分析する必要がありました。しかし、文章や画像などを作り出す人工知能を使うことで、これらの作業を自動でこなし、より速く正確に顧客対応をすることができます。例えば、顧客からの問い合わせに自動で答えたり、顧客それぞれに合わせたお知らせを送ったりすることが可能になります。これにより、担当者は時間を節約でき、より複雑な仕事に集中することができます。 また、文章や画像などを作り出す人工知能は、顧客の行動や好みを分析し、その人に合ったサービスを提供するのにも役立ちます。例えば、顧客の過去の買い物履歴やウェブサイトの閲覧履歴に基づいて、おすすめの商品を提案したり、特別な割引情報を提供したりすることができます。これにより、顧客の満足度を高め、長く続く関係を築くことができます。さらに、文章や画像などを作り出す人工知能は、将来の売上を予測したり、新しい商品開発のヒントを提供したりすることも可能です。 このように、文章や画像などを作り出す人工知能は、顧客管理の未来を大きく変える力を秘めています。今後、ますます多くの会社が、顧客関係管理に人工知能を取り入れ、顧客との関係をより深めていくことでしょう。
WEBサービス

広告効果を高めるDSPとは?

広告を出したい企業にとって、需要側媒体と呼ばれる仕組みはとても便利な道具です。いくつもの広告掲載場所をまとめて管理し、様々な場所に広告を出すことができます。新聞や雑誌、テレビのような従来の広告媒体だけでなく、インターネット上の様々なサイトや携帯電話のアプリにも広告を掲載することが可能です。 この仕組みの大きな利点は、広告を見てもらいたい人々を細かく指定できることです。例えば、ある商品を若い女性に買ってほしい場合、その商品に興味がありそうな若い女性が多く見ている場所に絞って広告を出すことができます。年齢や性別だけでなく、趣味や好み、インターネットをよく見る時間帯など、様々な条件で絞り込みが可能です。そのため、より効果的に広告を届けることができ、無駄を省くことができます。 需要側媒体は、たくさんの情報をもとに、一番効果的な場所に、一番適切な価格で広告を掲載してくれます。まるで優秀な広告担当者のように、膨大な情報を分析し、最適な掲載場所と価格を瞬時に判断してくれます。 従来のように、担当者が一つ一つ広告掲載場所を探し、価格を交渉する手間が省けるため、時間と労力を大幅に削減できます。これまで広告担当者が費やしていた時間を、商品の開発や販売促進といった、他の重要な仕事に充てることができます。また、需要側媒体を使うことで、広告の効果を高め、より多くの利益を得られる可能性も高まります。そのため、多くの企業が、この便利な仕組みを活用し始めています。
機械学習

深層学習で学ぶ強化学習:DQN入門

近頃、様々な機械に知恵を与える技術である人工知能は、目覚ましい発展を遂げています。この技術の中でも、強化学習と呼ばれる方法は特に注目を集めており、様々な分野で応用が始まっています。強化学習とは、まるで人間が学習するように、試行錯誤を繰り返しながら、目的とする行動を身につける方法です。 例えば、未知のゲームに挑戦する場面を考えてみましょう。最初は遊び方が全く分からなくても、何度も遊ぶうちに、高い得点を得るための戦略を自然と学ぶことができます。強化学習もこれと同じように、最初は何も知らない状態から、成功と失敗を繰り返すことで、最適な行動を見つけ出していきます。この学習方法は、ロボットの動きを制御したり、複雑なゲームを攻略したり、自動運転技術を向上させるなど、幅広い分野で役立っています。 この強化学習の中でも、深層学習と組み合わせた深層強化学習という方法が、近年大きな成果を上げています。深層強化学習は、人間の脳の仕組みを模倣した深層学習を用いることで、より複雑な状況にも対応できるようになりました。その代表例が、今回紹介する「深層Q学習網(DQN)」と呼ばれる手法です。「Q学習網」とは、将来得られるであろう価値を予測しながら学習を進める方法です。ここに深層学習を組み合わせたDQNは、従来の方法では難しかった高度な問題解決を可能にしました。 DQNは、囲碁や将棋といったゲームで人間を上回る強さを示した人工知能の開発にも貢献しており、人工知能の発展に大きく貢献しました。この技術は、今後さらに様々な分野で応用されていくことが期待されています。
WEBサービス

DMPで変わる顧客戦略

お客様の情報をまとめて管理することは、現代の商売にとって大変重要です。そのための仕組みとして、「情報の管理場所」と呼ばれるものがあります。これは、お客様に関係する様々な情報を一箇所に集めて、整理して管理するためのものです。インターネット上にある、お客様の様々な行動の記録を集めます。例えば、どの会社のどの商品に興味を持ったのか、どんなものを買ったのか、仲間とどんなやり取りをしているのかといった情報です。これらの情報を集めることで、お客様一人ひとりの好みや行動のくせを詳しく知ることができます。 これまでは、お客様の情報が色々な場所に散らばっていて、全体像を掴むのが難しかったのですが、「情報の管理場所」を使うことで、バラバラだった情報を一つにまとめることができます。集めた情報を整理して分析することで、お客様の行動パターンや好みをより正確に理解できるようになります。例えば、ある商品に興味を持ったお客様が、他にどんな商品に興味を持っているのか、どんな広告を見せれば効果的なのかといったことが分かるようになります。 このようにして得られた情報は、販売戦略をより良くするために活用できます。例えば、お客様一人ひとりに合わせた広告をインターネット上に表示したり、おすすめ商品をメールで知らせたりすることが可能になります。また、新しい商品やサービスを開発する際にも、お客様のニーズを的確に捉えることができるので、より良い商品やサービスを提供することに繋がります。お客様の情報を一元管理することは、これからの会社の活動には欠かせないものと言えるでしょう。
言語モデル

SHRDLU:対話で世界を操る

1970年代初頭、人工知能の黎明期に、テリー・ウィノグラードという研究者によって画期的なシステムが開発されました。その名はSHRDLU(シュルドゥルー)。このシステムは、人間が日常的に使う言葉、つまり自然言語を使って指示を出すと、コンピュータ画面上に表現された仮想世界で、その指示通りの動作を実行することができました。 この仮想世界は「積み木の世界」と名付けられ、様々な形の積み木が配置されています。例えば、四角いブロックや三角錐、立方体などです。これらの積み木は、赤や緑、青といった様々な色で塗られており、ユーザーは「赤いブロックを緑のブロックの上に置いて」といった具体的な指示を、英語でSHRDLUに伝えることができました。すると、SHRDLUは指示された通りに、画面上の赤いブロックを緑のブロックの上に移動させるのです。 SHRDLUの革新的な点は、単に指示された通りの動作を実行するだけでなく、指示内容の理解度も高かったことです。例えば、「赤いブロックの上に何か置いて」と指示した場合、SHRDLUは緑のブロックなど、別の積み木を赤いブロックの上に置きます。また、「一番大きなブロックはどこにある?」といった質問にも、SHRDLUは仮想世界の中から一番大きなブロックを探し出し、その場所を言葉で答えることができました。 これは当時としては驚くべき能力で、コンピュータが人間の言葉を理解し、複雑な作業を実行できる可能性を示しました。SHRDLUは、人間とコンピュータが自然言語を通じてより高度な意思疎通を行う未来への道を切り開いた、人工知能研究における重要な一歩と言えるでしょう。