相加平均

記事数:(2)

アルゴリズム

中央値:データの中心を掴む

真ん中の値のことです。データの大きさの順に並べたときに、ちょうど真ん中にあたる値のことです。中央値は、データの中心的な傾向を示す指標のひとつであり、平均値とともに使われることがよくあります。 データの数が奇数のときは、真ん中の値がそのまま中央値になります。たとえば、1、3、5、7、9という5つのデータがあったとします。これらのデータを小さい順に並べると、1、3、5、7、9となります。このとき、真ん中の値は5なので、中央値は5となります。 一方、データの数が偶数のときは、真ん中の2つの値の平均値を中央値とします。たとえば、1、3、5、7という4つのデータがあったとします。これらのデータを小さい順に並べると、1、3、5、7となります。このとき、真ん中の2つの値は3と5です。これらの平均値は(3+5)÷2=4 なので、中央値は4となります。 中央値を使う利点は、極端に大きい値や小さい値の影響を受けにくいことです。たとえば、1、2、3、4、100というデータがあったとします。このデータの平均値は22ですが、100という極端に大きい値に引っ張られています。一方、中央値は3なので、100という値の影響をあまり受けていません。このように、一部の極端な値に影響されにくい指標を求めたい場合は、中央値が役立ちます。 まとめると、中央値はデータを大きさの順に並べたときの真ん中の値です。データの数が奇数の場合は真ん中の値、偶数の場合は真ん中2つの値の平均値を中央値とします。中央値は、平均値と並んでデータの中心的な傾向を示す指標としてよく用いられ、極端な値の影響を受けにくいという特徴があります。
分析

最頻値:データの中心を探る

最頻値とは、ある集まりの中で最も多く現れる値のことです。例えば、1,2,2,3,4,5という数字の集まりを考えてみましょう。この中で、2は他のどの数字よりも多く、2回現れています。ですから、この数字の集まりの最頻値は2となります。 では、最も多く現れる値が複数ある場合はどうなるでしょうか。例えば、1,2,2,3,3,4という数字の集まりを見てみましょう。この場合、2と3がどちらも2回ずつ現れており、これが最多です。このような時は、最も多く現れる値が複数あっても、すべて最頻値として扱います。つまり、この数字の集まりの最頻値は2と3の両方となります。 最頻値は、データの中心的な傾向を知るための便利な道具です。特に、数字ではないデータ、例えば好きな色や好きな食べ物などに対しては、平均値や中央値といった計算を行うことができません。このような場合に、最頻値は役に立ちます。例えば、クラスの皆が好きな色を赤、青、青、緑、青と答えたとします。この時、最頻値は青であり、最も人気のある色は青だということが分かります。 また、最頻値は極端に大きな値や小さな値に影響されにくいという特徴も持っています。例えば、1,2,2,3,4,100という数字の集まりを考えてみましょう。100という極端に大きな値が含まれていますが、最頻値は変わらず2です。このように、一部の極端な値に惑わされずに、データの全体的な傾向を捉えたい場合に、最頻値は有効な指標となります。