RMSLE:機械学習の評価指標
機械学習の手法を用いて予測を行う際には、その予測の正確さを確かめることが欠かせません。作った予測の良し悪しを評価することで、手法の選択や改良に役立てられるからです。そのためには、予測の正確さを測るための適切な物差し、つまり評価指標を選ぶことが重要になります。色々な評価指標の中からどれを使うべきかは、扱う問題の種類や目的によって異なります。今回の記事で取り上げる平均二乗対数誤差(RMSLE)は、回帰問題と呼ばれる、連続した数値を予測する問題で使われる指標の一つです。
平均二乗対数誤差は、予測値と実際の値の比率に着目した指標です。例えば、ある製品の売れ行きを予測する問題を考えてみましょう。100個売れると予想して90個だった場合と、10個売れると予想して1個だった場合、どちらも10個の誤差があります。しかし、最初の場合は売れ行きの規模に対して誤差が小さいのに対し、後の場合は誤差が大きいです。平均二乗対数誤差は、このような規模の違いを考慮に入れて、予測の正確さを評価します。そのため、実際の値の大きさが大きく変動するようなデータに適しています。
平均二乗対数誤差の計算方法は、まず予測値と実際の値の対数を取り、その差を二乗します。そして、全てのデータ点について二乗した差の平均を求め、最後にその平方根を計算します。対数を取ることで、大きな値の影響が小さくなり、比率の違いに注目することができます。二乗する理由は、誤差の正負を打ち消し、大きな誤差をより強調するためです。
平均二乗対数誤差は、値が小さいほど予測の正確さが高いことを示します。誤差が全く無い、つまり完璧な予測の場合は、平均二乗対数誤差は0になります。平均二乗対数誤差を使うことで、予測値と実際の値の比率に着目した評価が可能になり、より適切なモデル選択や改良を行うことができます。