交差エントロピーを学ぶ
機械学習という、まるで機械が自ら学ぶかのような技術があります。この技術の中でも、学習の良し悪しを判断する大切な指標に、損失関数というものがあります。損失関数は、機械の予測と実際の答えとのずれ具合を数値で表したもので、この数値が小さいほど、機械学習はうまくいっていると考えられます。
交差エントロピーもこの損失関数の一種です。特に、写真を見てそれが猫なのか犬なのかを判断するような、分類問題でよく使われます。例えば、ある写真が猫である確率を機械が80%、犬である確率を20%と予測したとします。そして、実際にはその写真は猫だったとしましょう。この時、交差エントロピーは、機械の予測がどれだけ正解に近かったかを測る尺度となります。
交差エントロピーの計算方法は少し複雑です。まず、正解の確率と機械が予測した確率のそれぞれに、対数を適用します。対数とは、簡単に言うと、ある数を何乗したら元の数になるのかを表す数値です。次に、正解の確率と、それに対応する予測確率の対数を掛け合わせます。猫の場合であれば、正解の確率は100%なので、1と機械が予測した猫である確率80%の対数を掛け合わせます。犬の場合も同様に、正解の確率0%と機械が予測した犬である確率20%の対数を掛け合わせます。最後に、これらの積を全て足し合わせ、符号を反転させます。
交差エントロピーは必ず0以上の値になります。そして、機械の予測が完璧に正解と一致した場合のみ、0になります。つまり、交差エントロピーが小さいほど、機械の予測は正確だと言えるのです。この値を小さくするように機械学習を進めることで、より精度の高い分類が可能になります。