コサイン類似度:データ間の関係性を紐解く
似ている度合いをはかる物差しは様々ありますが、ここでは「余弦類似度」という物差しについて説明します。この物差しは、複数の数値を順番に並べたもの、すなわち「ベクトル」と呼ばれるもの同士の似ている度合いを測るのに使われます。ベクトルは、色々なものの特徴を表すことができます。例えば、文章の特徴を単語の出てくる回数で表したり、商品の性質を数値で表したりする際に使われます。
余弦類似度は、二つのベクトルがどれくらい同じ向きを向いているかを数値で表すことで、データ同士の関係性を明らかにします。この数値は0から1までの範囲で表され、1に近いほど似ている度合いが高く、0に近いほど似ている度合いが低いと判断できます。
具体的には、二つのベクトルの内積をそれぞれのベクトルの長さで割ることで計算されます。内積とは、それぞれのベクトルを構成する数値同士を掛け合わせて、その合計を求めたものです。ベクトルの長さは、それぞれの数値を二乗して合計し、その平方根を求めたものです。
例を挙げて説明しましょう。二つのベクトルA(2, 1)とB(4, 2)があるとします。これらのベクトルの内積は、(2 × 4) + (1 × 2) = 10となります。ベクトルAの長さは√(2² + 1²) = √5、ベクトルBの長さは√(4² + 2²) = √20となります。よって、余弦類似度は10 / (√5 × √20) = 10 / 10 = 1となります。この場合、二つのベクトルは完全に同じ向きを向いているため、余弦類似度は最大値の1となります。このように、余弦類似度はデータの分析において、データ間の関係性を理解するための重要な道具となります。
余弦類似度は、文章の類似度判定や商品の推薦など、様々な場面で活用されています。例えば、ある商品の購入履歴から、その商品と似た特徴を持つ別の商品を推薦する際に、余弦類似度が用いられることがあります。また、検索エンジンにおいても、検索キーワードとウェブサイトの内容の類似度を計算する際に、余弦類似度が利用されることがあります。このように、余弦類似度は私たちの生活を支える様々な技術の根底を支える重要な概念と言えるでしょう。