マンハッタン距離

記事数:(1)

アルゴリズム

マンハッタン距離:街の距離を測る

碁盤の目のような街路を想像してみてください。目的地まで、斜めには進めず、東西南北、つまり縦と横の道だけを通って進むとしましょう。この時、実際に移動した道のりがマンハッタン距離と呼ばれるものです。マンハッタン距離とは、二つの点の間の距離を測る一つの方法で、特に縦横の移動しか許されない状況で役立ちます。 マンハッタンという名前は、ニューヨークのマンハッタン島の街路配置に由来しています。高層ビルが立ち並ぶこの島では、道路が碁盤の目のように整備されているため、目的地へ到達するためには、縦と横の通りを進むしかありません。この様子が、マンハッタン距離の概念とよく似ていることから、この名前が付けられました。 マンハッタン距離の計算方法はとても簡単です。二つの点の座標が分かっていれば、それぞれの座標の差の絶対値を足し合わせるだけで計算できます。例えば、点Aの座標が(1,2)で、点Bの座標が(4,5)だとします。この二点間のマンハッタン距離は、横方向の差(4−1=3)の絶対値である3と、縦方向の差(5−2=3)の絶対値である3を足し合わせた6となります。 この一見単純な計算方法が、様々な分野で応用されています。例えば、データ分析では、異なるデータ間の類似性を測る指標として使われます。また、機械学習の分野では、様々なアルゴリズムの中で距離を測る方法として利用されています。さらに、ナビゲーションシステムで経路探索を行う際にも、このマンハッタン距離が利用されることがあります。碁盤の目状の道路が多い都市部での経路探索に適しているためです。このように、マンハッタン距離は、一見単純でありながら、様々な場面で実用的な価値を持つ強力な道具なのです。