コンピュータビジョン

記事数:(48)

深層学習

表情で感情を読み解くAI

近年、人工知能技術は目覚しい進歩を遂げ、暮らしの様々な場面で利用されるようになってきました。中でも、人の表情から感情を読み取る技術である表情認識は、多くの関心を集めています。表情認識とは、人の顔の画像や動画から、喜び、悲しみ、怒り、驚きといった様々な感情を判別する技術です。 この技術は、人の顔を分析することで感情を認識します。具体的には、口角の上がり具合、眉間のしわの寄り具合、目の開き具合といった、顔の細かな部分の変化を読み取ることで、感情を推定します。以前の技術では、人の複雑な感情までは読み取ることが難しい場合もありました。しかし、現在の技術では、複数の感情が混ざり合った複雑な表情でも、高い精度で認識できるようになってきています。例えば、嬉しさと驚きの入り混じった表情や、怒りと悲しみが混ざった表情なども、より正確に読み取れるようになっています。 表情認識は、様々な分野で活用が期待されています。例えば、接客業では、顧客の表情から満足度を測ることで、より質の高いサービス提供へと繋げることが考えられます。また、教育分野では、生徒の表情から理解度や集中度を把握し、学習指導に役立てることも可能です。さらに、自動車分野では、運転手の表情から眠気や疲労を検知し、事故防止に役立てるといった応用も研究されています。このように、表情認識は、人と機械とのより自然で円滑な意思疎通を実現する上で、重要な役割を担う技術と言えるでしょう。
深層学習

一般物体認識とは?

近年、人工知能技術の進歩は目覚しく、様々な分野で私たちの生活に変化をもたらしています。中でも、画像から写っているものを判別する画像認識技術は目覚ましい発展を遂げており、私たちの暮らしをより便利で豊かにする技術として注目を集めています。 画像認識技術の中でも、写真や動画に写っているものを特定する技術は「もの認識」と呼ばれ、自動運転や医療診断、工場の自動化など、幅広い分野で応用されています。例えば、自動運転車では、周囲の状況をカメラで捉え、歩行者や他の車、信号などを認識することで安全な運転を支援しています。また、医療の現場では、レントゲン写真やCT画像から病変を見つけ出すのに役立っています。さらに、工場では、製品の欠陥を自動的に検出するなど、生産性の向上に貢献しています。 もの認識は、大きく分けて二つの種類に分類できます。一つは「一般もの認識」で、あらゆるものを認識することを目指す技術です。もう一つは「特定もの認識」で、特定のものだけを認識する技術です。例えば、犬の種類を判別する、特定の製品の欠陥を検出する、といった用途に用いられます。 この記事では、様々なものを認識できる技術である「一般もの認識」について、その仕組みや活用事例、今後の展望などを詳しく説明していきます。一般もの認識は、大量の画像データを使って学習することで、様々なものを高い精度で認識できるようになります。最近では、深層学習と呼ばれる技術の進歩により、その精度は飛躍的に向上しています。 この技術が進化していくことで、私たちの生活はさらに便利になり、様々な分野で革新が起きることが期待されます。この記事を通して、一般もの認識への理解を深めていただければ幸いです。
機械学習

画像認識:コンピュータの目

画像認識とは、コンピュータに人間の目と同じように、写真や動画に何が写っているのかを理解させる技術です。まるで私たちが目で見て、それが人なのか、物なのか、どんな状況なのかを判断するように、コンピュータも画像データから情報を読み取れるようにする技術のことです。 この技術は、人工知能という分野で特に注目を集めており、私たちの身近なところで活用が進んでいます。例えば、スマートフォンの顔認証で画面のロックを解除したり、自動運転車が周囲の歩行者や車、信号などを認識して安全に走行したり、工場では製品の傷や不良品を自動で見つけたりするなど、様々な分野で役立っています。 画像認識は、ただ画像を見るだけでなく、そこに写っている物が何なのかを判断し、グループ分けすることも可能です。これは、大量の画像データを使ってコンピュータに学習させることで実現しています。多くの画像データから、例えば「猫」の特徴を学習させることで、新しい画像を見たときにそれが猫かどうかを判断できるようになるのです。このように、コンピュータが自ら学び、能力を高めていくことを機械学習と言います。この機械学習こそが、画像認識の進化を支える重要な技術となっています。 さらに近年では、深層学習という、より高度な機械学習の手法が登場しました。深層学習は、人間の脳の仕組みを真似たしくみを使って、複雑な画像データでも高い精度で認識することを可能にしました。これにより、画像認識の精度は飛躍的に向上し、様々な応用分野で更なる発展が期待されています。
深層学習

高速物体検出:Fast R-CNN

近年、計算機による画像認識技術がめざましい発展を見せており、中でも画像内の対象物を探し出す技術は目覚ましい進歩を遂げています。この技術は、写真や動画の中から特定のものを探し出し、それが何であるかを判断するものです。例えば、自動運転の分野では、周囲の車や歩行者、信号などを認識するために必要不可欠です。また、医療の現場では、レントゲン写真から異常箇所を発見する際に役立っています。さらに、製造業では、製品の欠陥を自動で見つける検査工程に活用されています。このように、対象物を探し出す技術は、暮らしの様々な場面で利用されており、ますます重要度を増しています。 この技術は、大きく分けて二つの段階で処理を行います。まず、画像の中から対象物らしきものが写っている場所を大まかに特定します。そして、特定された場所について、それが本当に目的の対象物であるかどうか、また、それが何であるかを詳しく調べます。このような処理を行うことで、画像全体をくまなく調べるよりも効率的に対象物を探し出すことができます。 今回紹介する「高速領域畳み込みニューラルネットワーク(高速領域畳み込みニューラル網)」は、このような対象物検出技術の中でも、特に処理速度の速さに重点を置いた手法です。従来の手法では、画像の中から対象物らしき場所を一つずつ切り出して調べていましたが、この手法では、画像全体を一度に処理することで、大幅な高速化を実現しています。この高速化により、動画のような連続した画像に対してもリアルタイムで対象物を検出することが可能になり、自動運転やロボット制御など、様々な応用が期待されています。この手法の詳しい仕組みについては、次の章で詳しく説明します。
深層学習

全畳み込みネットワーク:画像の隅々まで理解する

近ごろ、画像を判別する技術は大きく進歩しました。特に、深層学習という方法を使った畳み込みニューラルネットワーク(略してCNN)は、画像の種類を分けたり、画像の中の物を見つけたりする作業で素晴らしい成果をあげています。しかし、これらの方法は、画像全体を見て大まかな内容を掴むことに長けていましたが、画像の細かい部分、つまり一つ一つの点の色が何を表しているかを詳しく理解することは不得意でした。 そこで生まれたのが、全畳み込みネットワーク(略してFCN)という方法です。FCNはCNNの仕組みを改良し、画像の一つ一つの点を細かく分類することで、画像の内容をより深く理解できるようにしました。従来のCNNとは違い、FCNは全部の層が畳み込み層だけでできており、全体をつなぐ層がありません。この工夫のおかげで、どんな大きさの画像でも扱うことができるようになりました。 FCNは、画像の中のどの点がどの物に属しているかを判別する「意味分割」と呼ばれる作業で特に力を発揮します。例えば、自動運転のシステムで、道路や歩行者、信号などを正確に見分けるために使われたり、病院でレントゲン写真などの画像から、腫瘍などの病気の部分を見つけるために使われたりしています。 FCNが登場するまでは、画像を細かい部分まで理解することは難しかったのですが、FCNによって一つ一つの点まで意味を理解できるようになったため、様々な分野で応用が進んでいます。例えば、農業の分野では、FCNを使って作物の種類や生育状況を調べたり、衛星写真から建物の種類や道路の状態を把握したりすることも可能になりました。このように、FCNは画像認識技術を大きく進歩させ、私たちの生活をより豊かにするために役立っています。
アルゴリズム

テンプレートマッチで画像を探す

型紙合わせと例えられる「テンプレートマッチ」は、まるで部屋の中から特定の物を探すように、画像の中から特定の図形を見つける技術です。この探し物に相当するのが「テンプレート」と呼ばれるもので、いわば探し物の型紙です。そして、部屋に相当するのが「対象画像」で、探し物をする場所です。 この技術は、テンプレートを対象画像の上で少しずつ移動させながら、最もよく似た場所を探し出すことで、探し物がどこにあるのかを特定します。ちょうど、透明な型紙を対象画像の上に重ね、型紙を少しずつずらして一番ぴったり合う場所を探すようなものです。一致度が高いほど、探し物がその場所に存在する可能性が高いと判断できます。 この技術は、様々な場面で役に立っています。例えば、工場の製造工程では、製品の外観検査に利用されます。正常な製品の画像をテンプレートとして登録しておき、製造された製品の画像と比較することで、傷や汚れといった欠陥を自動的に見つけることができます。人の目では見逃してしまうような小さな欠陥でも、コンピュータなら確実に見つけることができます。また、検査にかかる時間も大幅に短縮できます。 医療の分野でも、この技術は活躍しています。例えば、患者のレントゲン写真やCT画像から、特定の臓器や病変を見つけるために利用されます。健康な臓器の画像や、特定の病気の兆候を示す画像をテンプレートとして登録しておき、患者の画像と比較することで、病気の有無や進行具合をより正確に診断することができます。 このように、テンプレートマッチは、画像認識においてなくてはならない重要な技術となっています。様々な分野で活用され、私たちの生活を支えています。
深層学習

画像認識の進化:セマンティックセグメンテーション

ものの形や輪郭を細かく判別する技術に、意味分割と呼ばれるものがあります。これは、写真に写る一つ一つの細かい点に対し、それが何なのかを判別する技術です。従来の写真判別技術では、写真全体に何が写っているか、どこに何が写っているかを知るだけでした。しかし、意味分割では、写真の中のさらに細かい部分を理解することができます。 たとえば、街並みを写した写真をこの技術で分析するとどうなるでしょうか。空、建物、道路、人、車など、写真の中の一つ一つの点がそれぞれ何なのかを色分けして表示できます。これは、単に何が写っているかだけでなく、そのものの形や場所まで正確に把握できることを示しています。 この技術は、自動運転の分野で活用されています。周りの状況を細かく把握することで、安全な運転を支援します。また、医療の分野でも役立っています。レントゲン写真やCT画像を分析し、病気の診断を助けます。さらに、機械を動かす分野でも応用されています。機械が周りの状況を理解し、適切な動作をするために必要な技術となっています。このように、意味分割は様々な分野で将来性のある技術として注目されています。今後、ますます発展していくことが期待されます。
深層学習

画像を切り分ける: セグメンテーションタスク

画像を細かく分割し、写っているものを識別する技術である分割技術について説明します。この技術は、画像の中に何が写っているかを判別するだけでなく、その物体が画像のどの場所に、どのくらいの大きさで写っているかを、画素単位で細かく特定することができます。 例として、街の風景写真を考えてみましょう。この写真に分割技術を適用すると、建物は青、道路は灰色、空は水色、人は赤、車は緑…といったように、写っているものそれぞれが異なる色で塗り分けられます。まるで、写真に写るそれぞれの物体の輪郭を、色のついたペンで丁寧になぞっていくような作業を、コンピューターが自動で行っていると言えるでしょう。 従来の画像認識技術では、「この写真には猫が写っている」といったように、写真全体を見て写っているものを大まかに判別するだけでした。しかし、分割技術を用いることで、猫が写真のどの場所に、どのくらいの大きさで写っているのかを正確に特定できるようになります。つまり、従来の方法よりもより多くの情報を画像から得ることが可能になるのです。 この技術は、様々な分野で活用されています。例えば、自動運転では、周囲の状況を正確に把握するために活用されます。道路や車、歩行者などを正確に認識することで、安全な運転を支援します。また、医療画像診断では、臓器や腫瘍などの位置や大きさを特定するために活用されます。早期発見や正確な診断に役立ち、医療の進歩に貢献しています。このように、分割技術は私たちの生活をより豊かに、より安全にするために、様々な場面で活躍が期待されている重要な技術です。
深層学習

画像を切り分ける技術:セグメンテーション

近年、目覚しい進歩を遂げている画像認識技術は、写真に写る物体が何かを判別するだけでなく、その位置や形まで特定できるようになりました。この技術は私たちの身近なところで、例えば、スマートフォンでの顔認証や自動運転技術など、様々な分野で活用されています。そして、この技術の進歩を支える重要な要素の一つが、「画像分割」です。 画像分割とは、画像を小さな点の一つ一つまで細かく分類し、それぞれの点がどの物体に属するかを識別する技術です。例えば、街の風景写真を解析するとします。従来の画像認識では、「建物」「道路」「車」「人」などが写っていると認識するだけでした。しかし、画像分割を用いると、空や建物、道路、車、人といった具合に、点の一つ一つが何に該当するかを精密に分類することができます。まるで、写真の点一つ一つに名前を付けていくような作業です。 これは、単に写真に何が写っているかを認識するだけでなく、写真の構成要素を理解するという意味で、より高度な画像認識技術と言えます。例えば、自動運転技術においては、前方の物体が「人」であると認識するだけでなく、その人の輪郭や姿勢まで正確に把握することで、より安全な運転を支援することが可能になります。また、医療分野においても、画像分割は患部の正確な位置や大きさを特定するのに役立ち、診断の精度向上に貢献しています。このように、画像分割技術は、様々な分野で応用され、私たちの生活をより豊かに、より安全なものにする可能性を秘めていると言えるでしょう。
深層学習

画像認識の立役者:CNN

畳み込みニューラルネットワーク(CNN)は、人の脳の視覚に関する働きをまねて作られた、深層学習という種類の計算手法の一つです。特に、写真や動画といった視覚的な情報から、その特徴を掴むことに優れています。これまでの写真の認識手法では、例えば「耳の形」や「目の位置」といった特徴を人が一つ一つ決めて、計算機に教える必要がありました。しかし、CNNは大量の写真データを読み込むことで、写真の特徴を自分で学習できるのです。例えば、たくさんの猫の写真を読み込ませることで、CNNは猫の特徴を自然と理解し、猫を認識できるようになります。これは、まるで人が多くの猫を見て、猫の特徴を覚える過程に似ています。 CNNは「畳み込み層」と呼ばれる特別な層を持っています。この層では、小さなフィルターを写真全体にスライドさせながら、フィルターに引っかかる特徴を探します。このフィルターは、初期状態ではランダムな値を持っていますが、学習が進むにつれて、猫の耳や目といった特徴を捉える値へと変化していきます。まるで、職人が様々な道具を試しながら、最適な道具を見つけるように、CNNも最適なフィルターを探し出すのです。 CNNの学習には、大量のデータと、それを処理するための高い計算能力が必要です。近年、計算機の性能が飛躍的に向上したことで、CNNの性能も大きく進歩しました。現在では、写真の分類、写真の中の物体の位置特定、新しい写真の作成など、様々な分野で目覚ましい成果を上げています。CNNは、自動運転技術や医療画像診断など、私たちの生活を大きく変える可能性を秘めた技術と言えるでしょう。
深層学習

姿勢推定:人の動きを捉える技術

姿勢推定とは、写真や動画に写っている人の体の関節の位置を特定し、骨格を推測することで、その人の姿勢を理解する技術のことです。カメラで撮影された情報から、肩、肘、手首、腰、膝、足首といった主要な関節の位置を数値データとして特定します。そして、それらの点を線でつなぐことで、棒人間のように人体の骨格を表現します。まるで絵を描くように、体の骨組みを単純な形で表現することで、姿勢を捉えやすくするのです。 この技術は、静止している写真だけでなく、動画にも使うことができます。動画の場合、時間の流れに沿って姿勢の変化を追跡することが可能です。例えば、ある人が歩いている動画を分析すれば、一歩ずつどのように足や腰が動いているのかを詳細に把握できます。また、体操選手が技を行う様子を分析すれば、理想的な動きと比較することで、改善点を明確にすることも可能です。 姿勢推定は、様々な分野で活用が期待されています。スポーツの分野では、選手のフォーム分析に役立ちます。野球の投球動作や、ゴルフのスイングなど、細かい体の動きを分析することで、パフォーマンスの向上につなげることができます。医療の分野では、リハビリテーションの進捗状況を把握したり、高齢者の転倒リスクを評価したりするのに役立ちます。さらに、防犯の分野では、監視カメラの映像から不審な行動を検知したり、人の動きを認識して自動で照明を点灯させたりといった応用も考えられています。このように、姿勢推定は私たちの生活をより豊かに、そして安全にするための技術として、幅広い分野での活躍が期待されています。
深層学習

インスタンスセグメンテーションとは?

写真や絵に写っているものを、一つ一つ細かく分けて名前を付ける技術のことを、インスタンス・セグメンテーションと言います。これは、まるで写真の登場人物に一人一人名前を付けるように、写っているすべての物に名前を付け、その形も正確に捉える技術です。 例えば、街中の写真を考えてみましょう。そこには、歩行者、車、自転車、建物など、たくさんの物が写っています。通常の画像認識では、これらの物が「人」「乗り物」「建造物」といった大まかな種類に分けられるだけかもしれません。しかし、インスタンス・セグメンテーションでは、同じ種類の物であっても、一つ一つを区別することができます。例えば、たくさんの歩行者の中に、赤い服を着た人と青い服を着た人がいるとします。この技術を使えば、それぞれを「歩行者1」「歩行者2」といった具合に、別々のものとして認識し、それぞれにぴったり合った形のラベルを付けることができます。 これは、単に物が何であるかを判別するだけでなく、その物の位置や形を正確に把握できることを意味します。例えば、自動運転技術では、周囲の状況を正確に把握することが不可欠です。インスタンス・セグメンテーションを使えば、それぞれの車や歩行者の位置や動きを正確に把握することができ、より安全な自動運転が可能になります。また、医療分野でも、この技術は役立ちます。例えば、レントゲン写真から患部を正確に特定したり、顕微鏡写真から細胞の種類を細かく分類したりする際に、この技術が活用されています。このように、インスタンス・セグメンテーションは、様々な分野で応用され、私たちの生活をより便利で安全なものにするために役立っています。
機械学習

物体検出における矩形領域の役割

四角い枠組みのこと、それが矩形領域です。まるで絵を描く時、注目したい所に四角い枠を描くように、画像や動画の中の物体を囲む四角い枠のことを指します。この枠は、コンピューターにものの場所を教える上でとても大切な役割を担っています。 コンピューターに「これは何?」と物体を認識させる技術、それが物体認識です。そして、その物体が「どこにあるか?」を特定する技術、それが物体検出です。矩形領域は、まさにこの「どこにあるか?」を示すために使われます。例えば、写真の中に猫がいるとします。コンピューターはまず、写真の中の様々なものを認識し、その中に猫がいることを理解します。そして、矩形領域を使って、その猫が写真のどの位置にいるかを正確に示すのです。 では、どのようにしてコンピューターに矩形領域を伝えるのでしょうか?それは、座標を使って行います。画像の左上隅を始点(0, 0)と考え、そこから水平方向と垂直方向にどれくらい移動したかを数値で表します。矩形領域を作るには、左上の点と右下の点の二つの座標が必要です。例えば、左上の点が(10, 20)、右下の点が(50, 60)だとしましょう。これは、始点から水平方向に10、垂直方向に20進んだ場所に左上の点があり、水平方向に50、垂直方向に60進んだ場所に右下の点があることを意味します。こうして二つの点を指定することで、その間を結ぶ目に見えない線で四角形が作られ、目的の物体を囲むのです。 このようにして作られた矩形領域の情報は、その後のコンピューターによる処理で活用されます。例えば、自動運転技術では、周りの車や歩行者を認識し、安全に走行するために矩形領域の情報が利用されています。また、工場の自動化システムでは、製品の欠陥を検出するために矩形領域が使われています。このように、矩形領域はコンピューターが視覚情報を理解する上で欠かせない技術と言えるでしょう。
深層学習

姿勢推定:人の動きを読み解く技術

姿勢推定とは、写真や動画に写る人の姿から、関節の位置を特定し、体の動きや姿勢を推測する技術のことです。まるで骨格を写し出すレントゲン写真のように、肩、肘、手首、腰、膝、足首といった主要な関節の位置を計算機が自動的に見つけ出します。 この技術は、近年の計算機技術、特に深層学習という技術の発展によって大きく進歩しました。そして、様々な分野で使われるようになっています。 例えば、運動の分野では選手の型や動作の分析に役立っています。医療の分野では、リハビリテーションの進み具合を管理するために活用されています。娯楽の分野では、立体的な登場人物の動きの作成にも使われています。このように、姿勢推定技術は様々な可能性を秘めているのです。 従来、人の動きを分析するには、専門家が時間をかけて目で見て観察する必要がありました。しかし、姿勢推定技術を使うことで、より正確で、かつ効率的に分析を行うことが可能になりました。 例えば、スポーツ選手の場合、姿勢推定技術によって、投球動作やジャンプのフォームを細かく分析することができます。これにより、選手の長所や短所を客観的に把握し、パフォーマンス向上に繋げることができます。また、医療現場では、患者の歩行の様子や関節の可動域を正確に測定することで、リハビリテーションの効果を定量的に評価することができます。 このように、人の行動や状態を理解する上で重要な要素となる姿勢推定は、今後ますます発展が期待される技術と言えるでしょう。人の動きを自動で認識し分析する技術は、様々な場面で私たちの生活をより豊かに、より便利にしてくれる可能性を秘めているのです。
深層学習

画像を切り分ける技術:セグメンテーション

近年、人工知能の進歩によって、ものの形を捉える技術は大きく進展しました。以前は、写真全体を見て何が写っているかを判断するやり方が主流でした。しかし、最近は「分割」と呼ばれる技術が注目を集めています。この技術は、写真をとても細かい点の集まりとして捉え、それぞれの点が何に当たるのかを判別します。まるで絵画の点描のように、一つ一つの点を丁寧に分類していくことで、より詳しい内容を理解できるのです。 例えば、街並みを写した写真を見てみましょう。従来の方法では、「街の写真」としか認識できませんでしたが、「分割」技術を使えば、空は空、建物は建物、道路は道路…といったように、写真のあらゆる部分が細かく分類されます。空の色や建物の形、道路の幅など、これまで見過ごされていた細かな情報も、この技術によって正確に捉えることができるのです。 この技術は、単に写真の内容を理解するだけでなく、様々な分野で応用が期待されています。例えば、自動運転の分野では、周囲の状況をより正確に把握するために活用できます。道路の白線や標識、歩行者や他の車などを細かく識別することで、より安全な運転を実現できるでしょう。また、医療分野では、レントゲン写真やCT画像から、病気の部分を正確に見つけるのに役立ちます。これまで見つけるのが難しかった小さな病変も見逃すことなく、早期発見・早期治療に貢献できる可能性を秘めています。このように、「分割」技術は、私たちの生活をより豊かに、より安全にするための、革新的な技術と言えるでしょう。
深層学習

画像から物体を検出する技術

写真や動画に何が写っているかをコンピュータに理解させる技術、それが物体検出です。 例えば、街の風景写真の中に車や人、信号機などが写っているとします。この写真を入力すると、物体検出技術は「ここに車があります」「ここに人がいます」「ここに信号機があります」といった具合に、写っている物の種類と、その物が写真のどの場所に存在するのかを特定します。具体的には、検出された物の周りに四角い枠を描いて示すのが一般的です。 この技術は、私たちの生活を支える様々な場面で活躍しています。例えば、自動運転では、周りの状況を把握するために、カメラで撮影した映像から車や歩行者、信号機などを検出する必要があります。また、監視カメラでは、不審な動きをする人物や物を検出するために利用されます。さらに、画像検索では、キーワードに該当する画像を検索するために、画像の内容を理解する必要があります。このように、物体検出技術は、現代社会において欠かせない技術となっています。 以前は、コンピュータに物体を認識させるためには、人間が物体の特徴を細かく定義する必要がありました。例えば、「車は車輪が4つあって、窓があって…」といった具合です。しかし、この方法では、複雑な形状の物体や、照明条件の変化などに対応することが難しく、検出精度に限界がありました。 近年では、深層学習と呼ばれる技術が発展したことで、物体検出技術は大きな進歩を遂げました。深層学習を用いると、コンピュータに大量の画像データを読み込ませることで、コンピュータ自身が物体の特徴を学習できるようになります。これにより、人間が特徴を定義する必要がなくなり、複雑な背景の中でも物体を高精度で検出することが可能になりました。まるで人間の目を超えるかのような、高い精度で物体を認識できるようになったのです。
深層学習

物体識別タスク:種類と応用

私たちは、生まれたときから周りの世界を目で見て、何がどこにあるのかを理解する能力を持っています。しかし、機械にとっては、写真や動画に何が写っているのかを理解することは容易ではありませんでした。この「ものを見る」能力を機械に持たせる技術こそが、物体識別です。物体識別は、人工知能の重要な一部分であり、写真や動画に写る物体が何であるかを機械に判断させる技術のことを指します。 以前は、機械に物体を識別させるためには、複雑な計算式やルールを人間が一つ一つ設定する必要がありました。例えば、猫を識別させるためには、「耳が尖っている」「目が丸い」「ひげがある」といった特徴を細かく定義しなければなりませんでした。しかし、近年の深層学習と呼ばれる技術の進歩により、状況は大きく変わりました。深層学習では、大量のデータから機械が自動的に物体の特徴を学習するため、人間が複雑なルールを設定する必要がなくなりました。この技術革新によって、物体識別の精度は飛躍的に向上し、私たちの生活にも様々な恩恵をもたらしています。 例えば、自動運転技術では、周りの車や歩行者、信号などを識別することで、安全な運転を支援しています。また、医療の分野では、レントゲン写真やCT画像から病変を見つけ出すシステムが開発され、医師の診断を助けています。さらに、工場では、製品の欠陥を自動で見つけることで、品質管理の効率化に役立っています。このように、物体識別は、私たちの生活をより便利で安全なものにするための基盤技術として、今後ますます重要になっていくと考えられます。そして、更なる技術革新によって、私たちの想像を超える新たな活用方法が生まれてくるかもしれません。
深層学習

Mask R-CNNで画像を理解する

写真や動画に映る物事をコンピュータに理解させる技術は、機械学習の中でも特に注目を集める分野です。その中でも、「もの体の検出」と「領域の分割」は重要な技術です。「もの体の検出」とは、写真に写っている様々なものを探し出し、それが何であるかを特定する技術です。例えば、街の風景写真を入力すると、「車」「人」「信号」など、写真に写っているものを認識します。一方、「領域の分割」は、もの体の位置を特定するだけでなく、そのものの形をピクセル単位で正確に切り抜く技術です。例えば、「車」を検出するだけでなく、車の輪郭をピクセル単位で正確に描き出すことができます。 従来、これらの技術は別々の手法で処理されていました。しかし、「マスクR-CNN」という新しい手法が登場したことで、一つの処理で「もの体の検出」と「領域の分割」を同時に行うことが可能になりました。マスクR-CNNは、まず写真に写っている可能性のある全てのものを探し出し、次にそれぞれのものが何であるかを判断します。それと同時に、それぞれのものの形をピクセル単位で正確に切り抜きます。この手法は、従来の方法に比べて処理の効率が良く、しかも精度の高い結果が得られます。 この技術は、様々な分野で応用されています。例えば、自動運転では、周囲の状況を正確に把握するために、車や歩行者、信号などを検出し、その位置や形を正確に把握する必要があります。医療画像診断では、臓器や腫瘍などの位置や形を正確に把握することで、より正確な診断が可能になります。また、ロボット制御の分野でも、周囲の物体を認識し、その位置や形を把握することは非常に重要です。このように、マスクR-CNNをはじめとする「もの体の検出」と「領域の分割」の技術は、私たちの生活をより便利で安全なものにするために、様々な分野で活躍が期待されています。
深層学習

姿勢推定における関節連結の新手法

近年、画像を解析して人の姿形を捉える技術は目覚ましい発展を遂げています。特に、人の体の関節の位置を正確に把握する「姿勢推定」は、多くの関心を集めている技術の一つです。スポーツの分野では、選手の動きを細かく分析することで、より効果的なトレーニング方法の開発や、フォームの改善に役立てることができます。医療現場では、リハビリテーションの支援に活用することで、患者の回復状況を客観的に評価し、最適な治療計画を立てることが可能になります。 この姿勢推定は、写真や動画から人の体の各関節の位置を特定し、それらを繋ぎ合わせて骨格を再現する技術です。まるで、写真の中に写る人の骨組みを透視しているかのように、関節の位置を正確に捉えることができます。しかし、この技術にも課題があります。例えば、複数の人が同時に写真に写っている場合、どの関節が誰のものなのか、どの関節とどの関節を繋げば正しい骨格になるのかを判断するのが難しくなります。まるで、たくさんのパズルのピースがバラバラに混ざっている状態で、正しい組み合わせを見つけ出すようなものです。 この複雑な問題を解決するために、様々な新しい方法が研究開発されています。それぞれの人の骨格を個別に認識し、混同することなく正確に姿勢を推定する技術の開発が進んでいます。これにより、より複雑な状況でも正確に姿勢を推定することが可能になり、様々な分野での応用が期待されています。例えば、スポーツの試合中の選手の動きを分析したり、街中の人々の動きを解析することで、より安全で効率的な社会の実現に貢献することができます。
深層学習

PSPNet:高精度画像セグメンテーション

写真や絵を、点の一つ一つまで細かく分けて、それぞれに名前を付ける技術のことを、画像分割と言います。まるで、絵具のパレットのように、写真の中の空は「空」、木は「木」、建物は「建物」といった具合に、細かく色分けしていく作業を想像してみてください。この技術は、私たちの生活をより良くするために、様々な分野で活躍しています。 例えば、自動運転の車では、この技術を使って周りの状況を理解しています。道路はどこで、歩行者はどこにいるのか、信号の色は何かなどを、瞬時に見分けることで、安全な運転を助けています。また、病院では、この技術が病気の診断を助けています。レントゲン写真やCT画像から、臓器の形や腫瘍の位置を正確に特定することで、医師の診断をより確かなものにすることができます。 近年、この画像分割の技術は、人工知能の進化によって大きく進歩しました。特に、「深い学習」と呼ばれる技術は、まるで人間の脳のように学習する能力を持ち、画像分割の精度を飛躍的に向上させました。「深い学習」以前の方法では、一つ一つの点を細かく見ていく作業に多くの時間がかかり、正確さも今ひとつでしたが、「深い学習」によって、複雑な画像でもより速く、より正確に分割することが可能になりました。その中でも、ピーエスピーネットと呼ばれる技術は、最新の技術の一つです。ピーエスピーネットは、画像全体の関係性を理解することで、より正確に分割を行います。まるで、パズルを解くように、一つ一つの点だけでなく、周りの点との関係性も考慮することで、より正確な全体像を把握することができるのです。この技術によって、これまで以上に精度の高い画像分割が可能になり、自動運転や医療診断など、様々な分野での応用が期待されています。
深層学習

画像認識の進化:意味分割の世界

意味分割とは、写真や絵のような画像に写っているものが何であるかを、とても細かく判別する技術のことです。まるで職人が小さなタイルを一つずつ丁寧に敷き詰めるように、画像の最小単位である一つ一つの画素(点)が、どの物体に属しているのかを判別していきます。例えば、街の風景写真を入力すると、空は空、道路は道路、建物は建物といった具合に、種類ごとに画素を色分けして表示できます。 従来の画像認識技術では、「この写真には車と人が写っている」といったように、写真全体に何が写っているか、あるいは写っている物の大まかな位置を捉えることしかできませんでした。しかし意味分割では、画素レベルで画像を理解するため、より詳細な情報を抽出できます。例えば、自動運転車に搭載されたカメラで撮影した画像を意味分割することで、道路の境界線や歩行者、信号機などの位置を正確に把握できます。これにより、自動運転車は周囲の状況をより深く理解し、安全な走行を実現できるのです。また、医療分野では、レントゲン写真やCT画像から腫瘍などの病変部分を正確に特定するために意味分割が活用されています。医師は病変の大きさや形状を正確に把握することで、より適切な診断と治療方針を決定できます。 意味分割は、画像に意味という名のラベルを一つずつ貼り付けていくような作業であるため、コンピュータにとっては高度な処理能力が必要です。近年では、深層学習(ディープラーニング)と呼ばれる技術の進歩により、意味分割の精度は飛躍的に向上しており、様々な分野での応用が期待されています。まるで人間の目と同じように画像を理解するこの技術は、今後ますます私たちの生活に欠かせないものとなるでしょう。
深層学習

すべてを識別する画像認識技術

物の見分けに関する技術の中で、全体像把握分割と呼ばれる新しい方法が登場しました。この技術は、写真の中の全ての点に名前を付けることを目指しています。これまでの技術では、写真の中の物体の種類を判別する意味分割と、個々の物体を区別する個体分割という二つの方法がありました。全体像把握分割は、これらの二つの良い点を組み合わせた技術と言えます。 意味分割では、例えば複数の車が写っている写真の場合、全ての車に「車」という名前を付けます。しかし、どの車がどの車なのかを区別することはできません。一方、個体分割では、それぞれの車を区別することができます。例えば「車1」「車2」「車3」のように名前を付けます。しかし、空や道路といった背景の部分には名前を付けません。つまり、「物」ではない部分は無視されます。 全体像把握分割は、これらの二つの方法を統合したものです。写真の中の全ての点に対して、それがどの種類の物に属するのか、そしてどの個体に当たるのかを判別します。例えば、複数の車が写っている写真であれば、それぞれの車を「車1」「車2」「車3」のように区別すると同時に、道路や空といった背景の部分にも「道路」「空」といった名前を付けます。このように、写真の中の全ての要素に名前を付けることで、写真の中の世界をより深く理解することが可能になります。全体像把握分割によって、自動運転やロボット技術など、様々な分野での応用が期待されています。特に、周りの状況を正確に把握する必要がある分野では、この技術の進化が大きな進歩をもたらすでしょう。
深層学習

全畳み込みネットワーク:画像の隅々まで理解する

近年の画像認識技術の進歩は目覚ましく、特に畳み込みニューラルネットワーク(略して畳み込みニューラル網)はその中心的な役割を担っています。畳み込みニューラル網は、画像の持つ特徴を捉える畳み込み層と、捉えた特徴をより抽象的な情報へと変換するプーリング層を交互に積み重ねる構造を持ち、この構造によって、物体認識や画像分類といった作業において高い性能を示します。 従来の畳み込みニューラル網では、ネットワークの最終層に全結合層と呼ばれる層が用いられていました。この全結合層は、入力画像全体の特徴を一つのベクトルにまとめる働きをするため、画像中の位置に関する情報が失われてしまうという欠点がありました。例えば、猫が画像のどこに写っているかという情報は、全結合層を通すことで分からなくなってしまいます。 この問題を解決するために考案されたのが、全結合層を完全に排除し、畳み込み層のみで構成された「全畳み込みネットワーク」略して全畳み込み網です。全畳み込み網は、画像のそれぞれの小さな区画(画素)に対して、それが何であるかを予測する、言い換えれば画像の各部分にラベルを付ける「意味分割」と呼ばれる作業に特化しています。 全畳み込み網を用いることで、位置情報を保持したまま画像解析を行うことが可能になります。例えば、猫の画像を入力すると、猫の輪郭に沿って「猫」というラベルが付けられます。このように、全畳み込み網は、画像のどの部分が何であるかを詳細に理解するための強力な手法であり、自動運転や医療画像診断など、様々な分野への応用が期待されています。
深層学習

インスタンスセグメンテーションとは

画像を理解する技術は、近年、目覚ましい発展を遂げてきました。中でも、「もの」を判別するだけではなく、一つ一つのものの形まで細かく認識する技術は、特に注目を集めています。これを「事例分割」と呼びます。これは、写真に写るたくさんの「もの」を、一つ一つ丁寧に区別して、それぞれに名前を付けるような作業です。まるで、写真の中に写る全てのものに、名前ラベルを貼り付けていくようなイメージです。 例えば、たくさんのリンゴが山積みになっている様子を写真に撮ったとします。普通の画像認識技術では、「リンゴ」という種類は認識できても、どのリンゴがどのリンゴかまでは判別できません。しかし、事例分割を使えば、重なり合っているリンゴも一つ一つ区別し、「リンゴ1」「リンゴ2」「リンゴ3」……と、それぞれに名前を付けることができます。 この技術のすごいところは、ものの種類だけでなく、一つ一つのものの形まで正確に捉えられる点です。リンゴが重なっていても、隠れている部分の形まで推測して、それぞれのリンゴの輪郭を正確に切り抜くことができます。まるで、職人が丁寧にリンゴを一つずつ切り分けていくかのような精密さです。 この技術は、様々な分野で応用が期待されています。例えば、自動運転の分野では、周囲の車や歩行者、信号などを正確に認識するために必要不可欠です。また、医療分野では、レントゲン写真やCT画像から、腫瘍などの病変部分を正確に特定するために役立ちます。さらに、工場の自動化やロボット制御など、事例分割は、私たちの生活をより便利で安全なものにするための、重要な役割を担っていると言えるでしょう。