深層学習

記事数:(300)

深層学習

SELU活性化関数:深層学習の新星

人間の脳の働きを真似た仕組みである深層学習は、人工知能の中核を担う技術です。この深層学習では、ニューラルネットワークと呼ばれるものが使われます。これは、たくさんの小さな計算単位であるノードが層状に繋がっており、まるで網目のように複雑な構造をしています。それぞれのノードは、前の層から送られてきた信号を受け取り、何らかの計算処理を行い、その結果を次の層へと送ります。この計算処理の中で、入力された信号を適切な出力信号に変換する重要な役割を担っているのが活性化関数です。 活性化関数は、モデルがどれだけうまく学習できるか、そしてどれだけの複雑な事柄を表現できるかに大きく影響します。いわば、学習の効率と表現力を左右する重要な要素なのです。適切な活性化関数を選ぶことで、より正確で高性能なモデルを作ることができます。もし、活性化関数が単純な比例関係を表す線形関数だけだと、表現できる範囲が限られてしまいます。複雑で入り組んだ現実世界の問題を解くためには、線形関数だけでは不十分であり、非線形な活性化関数が必要不可欠です。 例えば、シグモイド関数やReLU関数は、よく使われる活性化関数の代表例です。シグモイド関数は、入力信号を滑らかに変化させ、0から1の間に収まる出力信号を生み出します。これは、確率や割合を表すのに適しています。一方、ReLU関数は、入力信号が0以下の場合は0を出力し、正の場合はそのまま入力信号を出力します。このシンプルな仕組みが、学習速度の向上に繋がり、近年では特に注目を集めています。このように、それぞれの活性化関数は異なる特徴を持っています。問題の種類やデータの性質に合わせて、最適な活性化関数を選ぶことが、高性能な人工知能を開発する上で非常に重要です。
深層学習

ResNet:層を深くする技術

残差学習は、深い構造を持つ学習機械の学習をより円滑にするための、画期的な手法です。深い構造を持つ学習機械は、層が浅いものよりも多くの情報を表現できる可能性を秘めていますが、実際には層を深くすると、情報の変化が小さくなりすぎたり、逆に大きくなりすぎたりする問題が生じ、学習がうまく進まないことが知られています。残差学習は、まさにこれらの問題に対処するために開発されました。 通常の学習機械では、入力された情報から出力される情報への直接的な対応関係を学習しようとします。しかし、残差学習では、入力情報と出力情報の差、つまりどれだけ変化したかを学習します。この差こそが「残差」です。残差を学習することで、層が深くても、情報の変化が適切に伝わり、学習が安定します。 残差学習の仕組みを直感的に理解するために、各層が入力情報に少しだけ手を加える様子を想像してみてください。それぞれの層は、入力された情報を大きく変えるのではなく、微調整を加える役割を担います。そして、この微調整を幾重にも繰り返すことで、最終的には複雑な情報表現を獲得できるのです。これは、まるで職人が丁寧に細工を施し、素材に新たな価値を吹き込む工程にも似ています。 層が深くなることで生じる問題は、学習の妨げとなる大きな壁でしたが、残差学習はこの壁を乗り越えるための、まさに橋のような役割を果たしています。この革新的な手法によって、より深く、より複雑な学習機械の構築が可能となり、様々な分野で応用が進んでいます。
深層学習

位置エンコーディングで文脈を読み解く

言葉を理解するためには、それぞれの言葉が持つ意味だけでなく、言葉の並び順も非常に大切です。「私は猫が好きだ」と「猫は私が好きだ」は、言葉は同じでも、順番が違うだけで全く違う意味になる良い例です。人間は自然と理解できますが、コンピュータに文章を理解させるのは容易ではありません。コンピュータは基本的に、数字の列として単語を認識しています。そのため、単語の意味に加えて、文章中での位置関係も理解させなければなりません。 そこで活用されるのが「位置符号化」です。位置符号化は、文章中の単語の位置情報を、コンピュータが処理しやすい数値の列、つまりベクトルに変換する技術です。それぞれの単語が文章のどの位置にあるのかをベクトルで表すことで、コンピュータは単語の位置を把握できるようになります。この位置ベクトルは、単語の意味を表すベクトルに統合されます。これにより、コンピュータは単語の意味と位置の両方を考慮して文章を処理できるようになります。例えば、「走る」という動詞が文頭に来る場合は主語の動作を表し、文末に来る場合は目的語や補語の動作を表すといった、文脈に合わせたより深い理解が可能になるのです。 近年注目を集めている「変換器」のような深層学習モデルでは、この位置符号化が重要な役割を担っています。変換器は、文章全体の構造を捉えるのが得意なモデルですが、単語の位置情報を正確に捉えるためには位置符号化が不可欠です。位置符号化を用いることで、変換器はより高い精度で文章を理解し、翻訳や文章生成などの様々なタスクで優れた性能を発揮できるようになります。このように、位置符号化は、コンピュータに言葉を理解させるための重要な技術であり、自然言語処理の発展に大きく貢献しています。
深層学習

ResNet:層を飛び越える革新

近年、視覚情報をコンピュータで扱う画像認識技術は、めざましい発展を遂げてきました。特に、2015年頃には、畳み込みニューラルネットワーク(略してCNN)という手法が注目を集め、層と呼ばれる構成要素を深く積み重ねることで、より複雑な特徴を捉え、認識精度を向上させることが試みられていました。これは、人間の視覚系が、単純な線や点から始まり、徐々に複雑な形や物体を認識していく過程を模倣したものです。 しかし、CNNの層を単純に増やすだけでは、学習がうまく進まず、かえって性能が低下するという壁に直面しました。これは、勾配消失問題と呼ばれる現象で、深い層に学習に必要な情報がうまく伝わらなくなることが原因でした。まるで、高い山の頂上を目指す登山家が、途中で力尽きてしまうようなものです。 この問題に対し、マイクロソフト研究所のカイミング・ヒー氏らの研究グループは、画期的な解決策を提案しました。それは、ResNet(略して残差ネットワーク)と呼ばれる、層を飛び越える接続(ショートカットコネクション)を導入したネットワーク構造です。これは、登山道に迂回路を設けることで、途中で力尽きることなく、頂上を目指すことを可能にするようなものです。ショートカットコネクションによって、学習に必要な情報がスムーズに伝わるようになり、深い層まで効率的に学習できるようになりました。 ResNetの登場は、画像認識技術に大きな進歩をもたらしました。それまで困難だった100層を超える非常に深いネットワークの学習が可能になり、画像認識の精度が飛躍的に向上しました。これは、画像分類、物体検出、画像生成など、様々な応用分野で革新的な成果を生み出し、その後の画像認識技術の発展に大きく貢献しました。まるで、登山道が整備されたことで、多くの人が山の頂上からの景色を堪能できるようになったかのようです。
深層学習

ReLU関数:人工知能の進歩を支える立役者

ランプ関数とも呼ばれる「正規化線形関数」は、仕組みがとても分かりやすい関数です。この関数は、入力された値が0より小さい場合は0を返します。逆に、入力された値が0以上の場合は、その値をそのまま返します。ちょうど、電気の流れを一定方向にしか流さない整流ダイオードのような働きで、負の値は遮断され、正の値だけがそのまま通過するイメージです。 この関数の分かりやすさが大きな長所となっています。複雑な計算式を使わずに処理できるので、計算にかかる時間や資源を減らすのに役立ちます。近年の深層学習モデルでは、扱うデータ量が膨大になっています。このため、計算の効率化は非常に重要です。正規化線形関数を用いることで、学習にかかる時間を大幅に縮めることが可能になります。 たとえば、画像認識でこの関数を使うと、たくさんの画像データの中から特徴を早く見つけることができます。また、自然言語処理では、文章の意味を理解するのにかかる時間を短縮できます。このように、正規化線形関数は、様々な分野で深層学習の効率を高めるために使われています。この関数のシンプルな仕組みと効果は、人工知能の発展に大きく貢献しています。特に、近年の深層学習モデルが扱うデータ量の増加に対応するために、この関数の重要性はますます高まっています。
深層学習

活性化関数ReLU:ニューラルネットワークの立役者

人間の脳の神経細胞の働きをまねた仕組みであるニューラルネットワークにおいて、活性化関数はとても大切な役割を担っています。このニューラルネットワークは、データを受け取る入力層、データを変換していく中間層(隠れ層)、そして結果を出力する出力層という三つの層で構成されています。それぞれの層には、たくさんの小さな処理単位であるノード(ニューロン)が並んでいます。これらのノードの間で情報がやり取りされる時、活性化関数が活躍するのです。 活性化関数の役割は、入力された信号を、非線形変換と呼ばれる特殊な計算方法で変換することです。この非線形変換のおかげで、ニューラルネットワークは複雑なパターンを学習できます。もし、線形変換という単純な計算方法だけを使っていた場合、たくさんの層が重なった複雑なニューラルネットワークも、結局は一つの層と同じ働きしかできなくなってしまいます。つまり、複雑な事柄を学習することができなくなってしまうのです。非線形変換によって、ニューラルネットワークはより豊かな表現力を持ち、複雑な問題を解決できるようになるのです。 たとえば、たくさんの数字の画像を見て、それがどの数字かを当てる問題を考えてみましょう。線形変換だけでは、数字の細かい特徴を捉えるのが難しく、似たような形の数字を区別できません。しかし、非線形変換を使うことで、数字の曲線や直線といった複雑な特徴を捉え、より正確に数字を識別できるようになります。 活性化関数には、いくつか種類があり、それぞれ異なる特徴を持っています。よく使われるものとしては、なめらかな曲線を描くシグモイド関数や、階段のような形をしたステップ関数などがあります。どの活性化関数を使うかによって、ニューラルネットワークの学習効率や精度が変わってくるため、問題に合わせて適切な活性化関数を選ぶことが重要です。このように、活性化関数はニューラルネットワークの学習能力を左右する重要な要素であり、人工知能の進化を支える大切な技術の一つと言えるでしょう。
深層学習

ランダムイレーシング:画像認識の精度向上

画像認識の分野では、学習に用いる画像データを増やすことで認識精度を向上させる、データ拡張という手法がよく使われます。ランダムイレーシングもこのデータ拡張の一つであり、画像に部分的な欠損を作り出すことで、モデルの頑健性を高めることを目的としています。 この手法は、まるで子供がいたずら書きで絵の一部を塗りつぶすように、画像の一部分を四角形で覆い隠します。この覆い隠す四角形は、大きさも位置も様々です。覆い隠す四角形の大きさは画像全体に対してランダムに決定され、時には小さく、時には大きく設定されます。また、覆い隠す位置も画像のどこであっても構いません。中央付近に配置されることもあれば、端の方に寄ることもあります。 そして、この四角形で覆われた部分の画素の値は、ランダムな値に置き換えられます。つまり、隠された部分は単一の色で塗りつぶされるのではなく、様々な色の点で構成された、一見ノイズのように見える状態になるのです。 このように画像の一部を意図的に欠損させることで、何が起きるのでしょうか。モデルは、完全な情報が得られない状況でも、画像に写っているものを正しく認識することを強いられます。部分的に情報が欠けていても、残された情報から全体像を推測し、正しい答えを導き出す訓練を積むわけです。この訓練を通して、モデルは特定の部分的な特徴に過度に依存するのではなく、画像全体の文脈を理解する能力を身につけるのです。結果として、多少の情報が欠損していても、あるいは被写体の一部が隠れていても、正しく認識できる、より頑健なモデルが完成します。
深層学習

SSD:高速・高精度な物体検出

多くの機器が視覚を持つ現代社会において、機械に画像や動画を理解させる技術は大変重要です。その中でも、画像や動画の中から特定の物体を識別し、位置を特定する物体検出技術は、様々な分野で応用されています。例えば、自動運転車では歩行者や他の車両を認識するために、監視システムでは不審な行動を検知するために、医療画像診断では病変の発見に役立っています。 近年、人間の脳の仕組みを模倣した深層学習と呼ばれる技術の進歩により、物体検出の精度は飛躍的に向上しました。この技術革新の中で、ひときわ注目を集めているのがSSD(Single Shot MultiBox Detector)という手法です。SSDは、一枚の画像から一度の処理で複数の物体を検出できるため、処理速度が速いという特徴があります。従来の手法では、画像を何度も走査する必要があったため、処理に時間がかかっていましたが、SSDはリアルタイム処理を可能にしました。 また、SSDは高精度な検出能力も兼ね備えています。様々な大きさの物体を検出するために、複数の大きさの枠を用意し、それぞれの枠で物体の有無を判断します。これにより、小さな物体から大きな物体まで、正確に検出することが可能になりました。SSDが登場する以前にも、YOLO(You Only Look Once)という高速な物体検出手法がありましたが、SSDはYOLOの後継モデルとして、更なる高速化と高精度化を実現し、物体検出技術における革新的な手法として広く利用されています。 SSDの登場は、物体検出技術の進化における大きな一歩となりました。今後も更なる技術革新により、より高精度かつ高速な物体検出技術が開発され、様々な分野での応用が期待されます。
深層学習

FPN:高精度な物体検出を実現する技術

物を探す画像認識技術では、画像に写る物体の大きさが様々であることが課題となります。遠くにあるものは小さく、近くにあるものは大きく写るため、これらを同じものだと認識するには、大きさの違いを考慮する必要があります。この課題を解決するのが特徴ピラミッドと呼ばれる技術です。 特徴ピラミッドは、画像を異なる縮尺で複数枚用意することで、様々な大きさの物体の特徴を捉えます。例えば、元の画像を縮小した画像、さらに縮小した画像などを用意することで、ピラミッドのような階層構造を作ります。それぞれの縮尺の画像から特徴を抽出することで、大小様々な物体を認識できるようになります。小さな物体は縮小画像から、大きな物体は元の画像から、それぞれ適切な大きさで特徴を捉えることができるのです。 従来の物体認識システムでは、この特徴ピラミッドが重要な役割を果たしていました。ピラミッド構造によって、一枚の画像から様々な大きさの特徴を抽出できるため、様々な大きさの物体を検出することが可能になります。例えば、遠くの小さな人と近くの大きな人をどちらも「人」と認識するために、この技術は不可欠でした。 しかし、特徴ピラミッドは計算量が多いという欠点も持っています。複数の縮尺の画像を処理する必要があるため、処理時間やメモリ使用量が増加してしまうのです。そのため、より効率的な物体認識技術の開発が進められていますが、特徴ピラミッドの基本的な概念は、様々な画像認識技術の基礎となっています。大きさの変化に対応できるという利点は、画像認識において非常に重要であり、今後の技術発展にも影響を与え続けるでしょう。
深層学習

物体検出の革新:YOLO入門

近頃、機械による画像認識技術は著しい発展を遂げ、その中で対象物を識別する技術は特に重要視されています。自動運転や機械による作業、安全確認装置など、様々な場面で活用されています。ところが、高い精度で対象物を識別しようとすると、処理に多くの資源が必要となり、即座に結果を得ることが難しい状況でした。「一度だけ見る」という意味を持つ物体検出技術は、この問題を解決するために開発された画期的な技術です。これまでの対象物識別技術は、画像から対象物になりそうな部分を抜き出し、それぞれを判別するという二段階方式でした。この方法は高い精度で対象物を識別できますが、処理に時間がかかる欠点がありました。一方で、「一度だけ見る」という物体検出技術は画像全体を一度だけ見て、対象物の位置と種類を同時に予測するため、高速な対象物識別を実現します。 この技術は、画像を格子状に分割し、それぞれの格子で対象物の有無と種類、位置を予測します。従来の二段階方式とは異なり、画像全体を一度だけ解析するため、処理速度が大幅に向上します。さらに、この技術は様々な大きさや種類の対象物に対応できます。小さな対象物から大きな対象物まで、一つの技術で識別できるため、応用範囲が広く、様々な分野で活用が期待されています。 もちろん、この技術にも課題はあります。例えば、互いに重なり合った対象物や、背景に溶け込んだ対象物の識別は難しい場合があります。しかし、技術の進歩は目覚ましく、これらの課題も今後の研究開発によって克服されていくと考えられています。現在も様々な改良が加えられており、より高速で高精度な物体検出技術の実現に向けて、研究開発が進められています。この技術は、機械による画像認識技術の発展に大きく貢献し、私たちの生活をより豊かに、安全にする可能性を秘めていると言えるでしょう。
深層学習

R-CNN:物体検出の革新

「候補領域の選定」とは、画像の中から物体が写っているであろう場所を絞り込む作業のことです。この作業は、まるで宝探しをする前に、宝が埋まっている可能性の高い場所を地図上でいくつか印をつけるようなものです。この印をつけた場所一つ一つを「候補領域」と呼び、四角形で表現します。 この候補領域を見つけるために、「選択的探索」と呼ばれる手法がよく使われます。この手法は、まるでジグソーパズルを組み立てるように、画像の色や模様といった特徴が似ている小さな領域を少しずつ繋げて、より大きなまとまりを作っていきます。例えば、青い空と白い雲、または赤いリンゴと緑の葉っぱといった具合です。そして、最終的に出来上がったまとまりを四角形で囲み、候補領域として抽出します。 この選択的探索を使う利点は、画像全体をくまなく調べる必要がないという点です。宝探しの例で言えば、山全体を探すのではなく、宝の地図に印がついている場所に絞って探すようなものです。これにより、処理の効率が大幅に向上します。しかし、この手法にも欠点があります。場合によっては、数百から数千個もの候補領域が抽出されることがあるのです。これは、宝の地図に印が多すぎて、結局どこを探せば良いのかわからなくなってしまうようなものです。つまり、候補領域が多すぎると、その後の処理に時間がかかってしまう可能性があるのです。そのため、候補領域の数を適切に絞り込む工夫が重要になります。
深層学習

画像認識の革新:SENet

画像を認識する技術を競う世界的に有名な大会、二〇一七年画像ネット大規模視覚認識競技会で、素晴らしい成果が生まれました。この大会は、画像認識技術の進歩を測る重要な指標となっており、数多くの研究機関や企業がしのぎを削っています。その中で、今回ご紹介する成果はひときわ輝かしいものでした。 「注意機構エス・イー・ネット」と名付けられた新しい技術が、他の参加者を大きく引き離して優勝を勝ち取ったのです。この技術は、画像の中から重要な部分に「注意」を集中することで、認識の精度を飛躍的に向上させることができます。例えば、犬の画像を認識する場合、従来の技術では、背景や周りの物体にも注意が分散されてしまうことがありました。しかし、この新しい技術は、犬の特徴的な部分、例えば耳や鼻、尻尾などに「注意」を集中させることで、より正確に犬を認識することができるのです。 そして、この技術の驚異的な点は、その誤答率の低さです。わずか二・二五パーセントという数値は、これまでの記録を大きく塗り替えるものでした。百枚の画像を認識させた際に、間違えるのはたった二枚程度という驚異的な精度です。この成果は、画像認識技術における大きな躍進と言えるでしょう。今後、この技術は様々な分野に応用されることが期待されています。自動運転技術や医療画像診断など、人間の目では見つけにくいわずかな変化も見逃さない高い認識精度が求められる分野で、この技術は大きな力を発揮するでしょう。まさに、画像認識技術の未来を明るく照らす、輝かしい成果と言えるでしょう。
深層学習

ResNet:残差学習で画像認識を革新

近年の機械学習、とりわけ画像の認識において、モデルの層を深く積み重ねることで認識の正確さが向上することが分かってきました。層を深くするほど、モデルはより複雑な特徴を捉えることができ、結果として性能が向上するのです。しかし、この単純に層を増やすというやり方には、落とし穴がありました。あまりにも層を深くしてしまうと、学習の過程で勾配が消失したり、逆に爆発したりするという問題が発生し、学習がうまく進まなくなってしまうのです。 このような問題を解決するために、画期的な学習方法である残差学習が登場しました。残差学習は、層の出力をそのまま次の層に渡すのではなく、入力と出力の差分、つまり残差を学習させるという斬新なアイデアに基づいています。残差を学習することで、勾配消失や勾配爆発といった問題を効果的に抑制できることが分かりました。この残差学習を基盤としたモデルがResNet(Residual Network残差ネットワーク)です。ResNetの登場は画像認識の世界に大きな革命をもたらしました。ResNet以前は、層を深くしすぎると性能が低下してしまうという問題がありましたが、ResNetによって非常に深いネットワークでも安定して学習できるようになり、画像認識の正確さは飛躍的に向上しました。これは画像認識のみならず、機械学習全体にとって極めて重要な進歩であり、様々な分野への応用が期待されています。例えば、自動運転技術や医療画像診断など、高度な画像認識技術が求められる分野において、ResNetはなくてはならない存在となっています。
深層学習

広くなった残差ネットワーク:Wide ResNet

画像を識別する技術において、深層学習と呼ばれる手法は目覚ましい成果を上げてきました。この深層学習では、人間の脳を模したたくさんの層を持つモデルを用います。層を深く重ねるほど、モデルはより複雑な特徴を捉え、識別精度が向上すると考えられてきました。しかし、単純に層を増やすだけでは、学習の過程で問題が発生することが分かってきました。具体的には、勾配消失や勾配爆発といった現象により、学習がうまく進まなくなるのです。 このような問題を解決するために、画期的な仕組みである残差接続を導入した残差ネットワーク、ResNetが登場しました。ResNetの登場は、深層学習の世界に大きな変革をもたらしました。残差接続とは、層の出力を次の層に渡す際、元の入力も一緒に加えるという仕組みです。これは、まるで近道を作って情報を伝達するようなものです。この近道のおかげで、深いネットワークでも勾配消失や勾配爆発といった問題を回避し、安定した学習が可能になりました。 ResNetの登場以前は、層を深くすると学習が不安定になり、精度が向上しないという問題がありました。しかし、残差接続によってこの問題が解決され、飛躍的に精度が向上しました。ResNetは画像の分類だけでなく、画像中の物体の位置を特定する物体検出や、画像を領域ごとに分割するセグメンテーションといった様々なタスクにも応用され、優れた性能を発揮しています。現在では、ResNetは深層学習モデルの代表的な構造として、広く利用されています。ResNetの成功は、深層学習における層の深さに関する研究を大きく前進させ、より高精度な画像識別技術の発展に貢献しました。まさに、深層学習の歴史における大きな転換点と言えるでしょう。
深層学習

DenseNet:濃密な接続で高精度を実現

濃密に連結されたネットワーク、略して濃密ネットは、畳み込みニューラルネットワークの分野で革新的な設計を取り入れたものです。この設計の要は、層と層の結びつき方にあります。従来のネットワークでは、ある層は直前の層からの出力だけを受け取っていましたが、濃密ネットでは、各層がそれ以前の全ての層からの出力を受け取るように設計されています。具体的に説明すると、最初の層の出力が、二層目、三層目、そして最後の層まで、全ての層に直接入力されるのです。 このような緻密な接続は、幾つかの利点をもたらします。まず、ネットワーク全体の情報の流れが最大限に活用されるため、学習の効率が向上します。それぞれの層が、過去の層から出力された全ての情報を直接受け取ることができるため、重要な特徴を見逃すことなく学習を進めることができるのです。次に、既に学習された特徴が再利用されやすくなります。これは、浅い層で学習された特徴が、深い層でも直接利用できるためです。この特徴の再利用は、計算量の削減にもつながります。 また、従来の深いネットワークで問題となっていた勾配消失問題にも効果を発揮します。勾配消失問題は、層が深くなるにつれて、誤差逆伝播時の勾配が小さくなり、学習が停滞してしまう現象です。濃密ネットでは、全ての層が直接接続されているため、勾配が効率的に伝播し、この問題を軽減することができます。このように、濃密ネットは、層同士の接続方法を工夫することで、従来のネットワークの課題を克服し、より高精度な学習を実現する先進的な設計と言えるでしょう。
深層学習

画像認識の立役者:VGG徹底解説

画像を認識する技術において、大きな進歩をもたらした革新的な仕組み、それがVGGです。VGGは、幾何学の視覚化を研究するオックスフォード大学のグループによって開発され、そのグループ名からVGGと名付けられました。この仕組みは、画像を認識する際に、画像の持つ特徴を捉えるための小さな窓、いわば虫眼鏡のようなものを用います。この虫眼鏡は、従来の技術では様々な大きさのものが使われていましたが、VGGでは3×3という小さなサイズの虫眼鏡に統一しました。 一見、小さな虫眼鏡だけでは画像の全体像を捉えにくそうですが、VGGは、この小さな虫眼鏡を何層にも重ねて使うことで、複雑な画像の特徴も正確に捉えることができるようにしました。小さな虫眼鏡を使うことで、処理に必要な計算の量を減らしつつ、高い精度を実現できたのです。また、画像の情報を整理する段階であるプーリングの後には、虫眼鏡を使う層の数を2倍に増やすことで、より多くの特徴を捉え、画像の表現力を高めています。 このような緻密な設計により、VGGは画像認識において高い性能を発揮し、その後の画像認識技術の進歩に大きく貢献しました。VGGが登場する以前は、様々な大きさの虫眼鏡を使うのが一般的でしたが、VGGの成功により、小さな虫眼鏡を何層も重ねる手法が主流となりました。これは、VGGが画像認識の分野における大きな転換点となったことを示しています。さらに、VGGは様々な種類の画像に適用できるため、現在でも幅広く活用されています。
深層学習

層を飛び越える魔法、スキップ接続

近年の深層学習では、より複雑な課題を解決するために、ネットワークの層を深くすることが重要とされています。層を深くすることで、より抽象的で複雑な特徴を捉えることができると考えられています。しかし、単純に層を増やすだけでは、学習の過程で問題が発生することが知られています。特に、勾配消失問題と勾配爆発問題が深刻です。勾配消失問題は、誤差逆伝播法を用いて学習を行う際に、勾配が層を遡るにつれて小さくなり、入力に近い層のパラメータがほとんど更新されなくなる現象です。反対に勾配爆発問題は、勾配が層を遡るにつれて大きくなり、学習が不安定になる現象です。これらの問題は、層が深くなるほど顕著になります。 これらの問題を解決するために、残差学習と呼ばれる手法が提案されました。残差学習の核となるアイデアは「スキップ接続」です。スキップ接続とは、ある層の出力を、数層先の層の入力に直接加算する仕組みです。通常、ニューラルネットワークでは、各層の出力が次の層の入力となりますが、スキップ接続では、層を飛び越えて入力値が伝達されます。数式で表現すると、ある層の入力をx、その層の出力をF(x)とした場合、スキップ接続を用いると、次の層への入力はx + F(x)となります。つまり、層の出力は、入力値に加えて、その層で学習された残差F(x)のみとなります。 このスキップ接続により、勾配がスムーズに伝搬するようになります。勾配消失問題は、勾配が層を遡るにつれて小さくなることで発生しますが、スキップ接続によって入力値が直接加算されるため、勾配が小さくなりすぎるのを防ぐことができます。また、スキップ接続は、ネットワークに恒等写像の性質を与えることにも貢献します。つまり、層が増えても、少なくとも入力と同じ値を出力することが保証されるため、層を深くしても学習が阻害されにくくなります。結果として、残差学習を用いることで、非常に深いネットワークでも安定した学習が可能になり、深層学習の性能向上に大きく貢献しています。
深層学習

画像認識の革新:GoogLeNet

二〇一四年、画像の仕分けを競う大会「画像大規模視覚認識チャレンジ(アイエルエスブイアールシー)」が開催されました。名だたる企業や研究所が技術を競い合う中、栄えある一位に輝いたのは、グーグル社が開発した「グーグルネット」でした。この大会は、画像を認識する技術の進歩を大きく促す重要な役割を担っており、グーグルネットの勝利は、画像認識の世界に大きな進歩をもたらしました。 グーグルネットは、従来の方法とは全く異なる、画期的な技術を採用していました。それまでの画像認識は、人の神経の仕組みを模倣した「多層の神経回路網」を何層も重ねることで、複雑な画像の特徴を捉えようとしていました。しかし、層を増やすほど計算が複雑になり、学習に時間がかかるという問題がありました。また、層を増やしすぎると、かえって性能が落ちてしまうこともありました。 グーグルネットは、この問題を「インセプションモジュール」と呼ばれる新しい仕組みで解決しました。インセプションモジュールは、様々な大きさのフィルターを並列に配置し、それぞれのフィルターで画像の特徴を抽出します。そして、それらの特徴を組み合わせることで、より多くの情報を捉えることができるのです。この仕組みのおかげで、グーグルネットは、少ない計算量で高い精度を実現することができました。 多くの研究者や技術者は、グーグルネットの登場に驚き、その性能に感嘆の声を上げました。まるで複雑な迷路のような構造を持つグーグルネットは、それまでの常識を覆す革新的な技術でした。この出来事は、画像認識技術の未来を大きく変える転換点となり、その後の技術開発に大きな影響を与えました。今や、画像認識は私たちの生活に欠かせない技術となっています。自動運転や医療診断など、様々な分野で活用されており、その進歩は今もなお続いています。グーグルネットの勝利は、その進歩の大きな一歩となったと言えるでしょう。
深層学習

Inceptionモジュールで画像認識

近年、画像を認識する技術は目覚ましい発展を遂げ、私たちの暮らしにも様々な恩恵を与えています。携帯電話での顔認証や、車の自動運転技術など、画像認識はなくてはならない技術となりました。この画像認識技術の進歩を支える重要な要素の一つが、畳み込みニューラルネットワークと呼ばれるものです。これは、人間の脳の仕組みを模倣したコンピュータプログラムで、画像に含まれる様々な特徴を学習することができます。そして、このプログラムの性能を飛躍的に向上させたのが、今回ご紹介する「開始」を意味する名前を持つ技術です。 この技術は、複数の畳み込み層とプーリング層と呼ばれるものを組み合わせることで、画像の様々な特徴を効率的に抽出することを可能にしました。畳み込み層は、画像の特定の部分に注目して、その部分の特徴を抽出する役割を担います。一方、プーリング層は、画像の解像度を下げることで、不要な情報を削ぎ落とし、重要な情報だけを残す役割を担います。これらの層を組み合わせることで、まるで熟練した画家が絵の細部から全体像までを捉えるように、画像の様々な情報を余すことなく学習することができるのです。 たとえば、一枚の猫の写真を認識させたいとします。この技術を用いると、まず畳み込み層が猫の目や耳、鼻といった細かい部分の特徴を捉えます。次に、別の畳み込み層がこれらの特徴を組み合わせ、猫の顔全体の特徴を捉えます。さらに、プーリング層が画像の解像度を下げ、背景などの不要な情報を削ぎ落とします。このようにして、様々な大きさの特徴を捉え、重要な情報だけを抽出することで、猫の画像であることを高い精度で認識できるようになります。この革新的な技術について、これから詳しく解説していきます。
深層学習

画像認識の革命児 AlexNet

2012年に開かれた、たくさんの画像を見て何が写っているかを当てる競技会「イメージネット大規模視覚認識チャレンジ(略称アイエルエスブイアールシー)」で、驚くべき出来事が起こりました。その大会で、アレックスネットという新しい画像認識の仕組みが、他の参加者を大きく引き離して優勝したのです。この出来事は、まるで魔法を見ているようで、世界中に衝撃を与えました。 アイエルエスブイアールシーは、膨大な数の画像を使って、何が写っているかを正確に認識できるかを競う大会です。当時、画像認識の分野では、精度の向上が難しくなってきており、行き詰まりを感じている研究者も少なくありませんでした。まるで深い霧の中で、進むべき道が見えなくなっているような状況でした。 アレックスネットの登場は、この状況を一変させました。深い霧が晴れ、明るい光が差し込んだように、画像認識の可能性を大きく広げたのです。これまでの画像認識の仕組みと比べて、アレックスネットは圧倒的に高い精度を達成しました。これはまさに画期的な出来事であり、画像認識技術の大きな進歩となりました。 アレックスネットの成功は、多くの研究者に刺激を与え、その後、様々な新しい画像認識の仕組みが開発されるきっかけとなりました。まるで、眠っていた才能が一気に目を覚ましたかのようでした。現在、私たちがスマートフォンやインターネットで当たり前のように使っている画像認識技術は、アレックスネットの登場なしには考えられないほど、大きな影響を受けています。アレックスネットは、まさに画像認識の歴史を大きく変えた、重要な出来事だったと言えるでしょう。
深層学習

敵対的生成ネットワーク:AIによる画像生成

絵を描く見習いと、その師匠の関係のように、二つの仕組みが互いに競い合いながら絵を描く腕を上げていく、画期的な方法があります。これは、まるで弟子と師匠が切磋琢磨するかのようです。この二つの仕組みは「絵を作るもの」と「絵を見分けるもの」と呼ばれ、互いに競うことで学びを深めていきます。「絵を作るもの」は、でたらめな色の点々から偽物の絵を作り出す、弟子のような役割です。まるでまだ腕の未熟な弟子が、見よう見まねで絵を描くように、試行錯誤しながら絵を作り出します。一方、「絵を見分けるもの」は、本物の絵と「絵を作るもの」が作った偽物の絵を見比べて、どちらが本物かを見極める師匠のような役割を担います。長年の経験を持つ師匠のように、鋭い目で絵の真贋を見抜きます。「絵を作るもの」は「絵を見分けるもの」を騙すために、より本物に近い絵を作ろうと努力します。師匠を唸らせるような、より精巧な絵を描こうと技術を磨きます。「絵を見分けるもの」は「絵を作るもの」の偽物を見抜くために、より高い見識を身につけようとします。弟子の巧妙な偽物を見破るために、さらに目を鍛え、審美眼を研ぎ澄まします。このように、二つの仕組みが相反する目的を持ちながら学ぶことで、最終的には非常に写実的な絵を作り出すことが可能になります。まるで弟子が師匠を超えるように、「絵を作るもの」は最終的に「絵を見分けるもの」を完全に騙すことができるほど、高度な絵を描く技術を獲得するのです。驚くべきことに、この方法は絵を描くだけでなく、様々な創作活動に応用できる可能性を秘めています。
深層学習

変分オートエンコーダ入門

変分自己符号化器(変分オートエンコーダ)とは、人工知能の分野で、まるで画家の頭の中を再現するように、新しい絵や写真などを作り出す技術です。この技術は、大きく分けて二つの部分、符号化器と復号化器から成り立っています。 符号化器は、入力された絵や写真の情報をより少ない情報量で表現する役割を担います。例えば、りんごの絵が入力された場合、りんごの色や形、大きさといった特徴を捉え、それらを数字の組み合わせに変換します。この数字の組み合わせは潜在変数と呼ばれ、りんごの特徴を簡潔に表した情報と言えます。まるで、りんごの設計図を作るように、元の絵の重要な情報だけを抜き出して記録するのです。 復号化器は、符号化器が作った潜在変数を受け取り、元の絵や写真を再現する役割を担います。りんごの例で言えば、先ほど作成したりんごの設計図(潜在変数)を読み取り、その情報をもとに、りんごの絵を再び描きます。これは、設計図から建物を建てるのと似ています。潜在変数という設計図に基づいて、元の絵を復元するのです。 変分自己符号化器の学習は、入力された絵と復元された絵の差が小さくなるように、符号化器と復号化器の調整を繰り返すことで行われます。これは、画家の修行に例えることができます。最初は下手でも、練習を重ねることで、元の絵に限りなく近い絵を描けるようになるのと同じです。このようにして、変分自己符号化器は様々な絵や写真の特徴を効率よく学び、多様な絵や写真などを作り出すことができるようになります。 いわば、様々な絵の描き方を学ぶことで、全く新しい絵を描くことができるようになる、人工知能の画家と言えるでしょう。
深層学習

DCGAN:高精細画像生成の革新

畳み込みニューラルネットを巧みに用いた深層畳み込み敵対的生成ネットワーク(DCGAN)は、従来の敵対的生成ネットワーク(GAN)が抱えていた画像生成における課題を克服し、革新的な進歩をもたらしました。そもそもGANは、偽物を作る生成器と本物か偽物かを見分ける識別器という、二つのニューラルネットワークが互いに競い合うことで学習を進めるという画期的な仕組みでした。生成器はより本物らしい偽物を作るように、識別器はより正確に真偽を見分けるように、まるでいたちごっこのように学習を深めていくのです。しかし、従来のGANでは、生成される画像の品質に限界があり、必ずしも高精細でリアルな画像を生成できるとは限りませんでした。そこで登場したのがDCGANです。DCGANは、生成器と識別器の両方に畳み込みニューラルネットを採用しました。畳み込みニューラルネットは、画像の局所的な特徴を捉え、それを階層的に組み合わせることで、画像全体の構造を理解する能力に長けています。例えば、絵に描かれた猫を認識する過程で、畳み込みニューラルネットは、まず耳や目、鼻といった部分的な特徴を捉え、次にそれらの特徴を組み合わせて猫の顔だと認識し、最終的に猫全体の姿を理解します。このように、画像の空間的な特徴を効果的に捉えることができる畳み込みニューラルネットは、ノイズの少ない、より自然で写実的な画像を生成するのに非常に適しているのです。この革新的な手法によって、DCGANは画像生成技術の新たな可能性を切り開き、様々な分野での応用が期待されています。例えば、架空の顔画像の生成や、低解像度画像を高解像度に変換する技術など、私たちの生活にも大きな影響を与える可能性を秘めていると言えるでしょう。
深層学習

画像変換の革新:CycleGAN

二つの異なる世界を橋渡しする技術、それが変換技術です。まるで魔法の杖を振るように、ある姿形を別の姿形へと変えてしまう、そんな夢のような技術が現実のものとなっています。この技術の中でも、ひときわ注目を集めているのがサイクルガンと呼ばれる手法です。 サイクルガンは、例えば馬の絵をシマウマの絵に、あるいは夏の風景画を冬の風景画に、といった具合に、異なる二つの世界の絵を相互に変換することを可能にします。従来の変換技術では、馬の絵とその馬に対応するシマウマの絵のように、変換元と変換先のペアになった絵が大量に必要でした。このようなペアの絵をたくさん集めるのは、場合によっては大変な手間がかかります。しかし、サイクルガンは驚くべきことに、ペアの絵を必要としません。馬の絵の集まりと、シマウマの絵の集まり、それぞれ別々に用意すれば、そこから変換の法則を自ら学び取ることができるのです。 これは、ペアの絵を用意することが難しい場合に非常に役立ちます。例えば、ある画家の独特な絵の雰囲気を写真に写し取りたいとします。画家の描いた絵と同じ構図の写真をすべて用意するのは至難の業でしょう。しかし、サイクルガンを使えば、画家の絵と写真、それぞれ別々に集めるだけで、写真の雰囲気を画家の絵の雰囲気に近づけることが可能になります。 サイクルガンの双方向変換という特徴も画期的です。馬をシマウマに変換できるだけでなく、シマウマを馬に戻すこともできるのです。これは、変換の精度を高める上で重要な役割を果たしています。まるで二つの世界を行き来しながら、それぞれの世界の法則を深く理解していくかのような学習方法によって、サイクルガンはより自然で精巧な変換を実現しています。この技術は、絵画や写真の分野だけでなく、様々な分野での応用が期待されています。