量子化:モデルを小さく、速く
私たちの身の回りにある音や光、温度といったものは、本来滑らかに変化する連続的な量です。しかし、コンピュータはこれらの連続的な量をそのまま扱うことができません。コンピュータが理解できるのは、0と1のデジタルデータ、つまり飛び飛びの値だけです。そこで、連続的な量をコンピュータが扱える飛び飛びの値に変換する技術が必要となります。これが「量子化」です。
例えば、アナログ式の温度計を思い浮かべてみましょう。温度計の水銀柱は、気温の変化に応じて滑らかに上下します。これが連続的な量の例です。一方、デジタル式の温度計は、数値で気温を表示します。この数値は、0.1度刻みであったり、1度刻みであったりと、飛び飛びの値で表示されます。これが量子化された状態です。量子化によって、本来は無限にあった温度の表現が、有限の段階に分けられます。この段階の数を「量子化ビット数」と呼び、ビット数が多いほど、元の連続的な量に近い形で表現できます。
音楽CDの作成も、量子化の良い例です。空気の振動という連続的な量である音は、そのままではCDに記録できません。そこで、音の大きさを細かく区切り、それぞれの区間に対応する数字を記録することで、CDに音を保存します。この際に、音の波形を時間方向にも細かく区切り、それぞれの瞬間の音の大きさを数字に変換していきます。
写真も同様です。写真の色の濃淡は本来連続的ですが、デジタルカメラでは、この濃淡を飛び飛びの値に変換することで画像を記録します。このように、量子化は、コンピュータが情報を処理・保存する上で欠かせない技術となっています。量子化ビット数を適切に設定することで、データの精度と容量のバランスを取ることが重要です。